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Figure 1. Showcasing the evolution of 3D wireframe reconstruction: The top reveals the transformative steps from a straight-line
dominated urban landscape to an abstract wireframe, contrasting various methodologies. Below, the intricate transition from a curve-rich
stuffed animal to its skeletal representation is depicted. While Line3D++ [12] and LiMAP [17] utilize line-matching techniques, our novel
NEAT approach forgoes matching, resulting in superior reconstruction fidelity with our proposed rendering-distilling formulation.

Abstract
This paper studies the problem of structured 3D recon-

struction using wireframes that consist of line segments
and junctions, focusing on the computation of structured
boundary geometries of scenes. Instead of leveraging
matching-based solutions from 2D wireframes (or line
segments) for 3D wireframe reconstruction as done in prior
arts, we present NEAT, a rendering-distilling formulation
using neural fields to represent 3D line segments with 2D
observations, and bipartite matching for perceiving and dis-
tilling of a sparse set of 3D global junctions. The proposed
NEAT enjoys the joint optimization of the neural fields and
the global junctions from scratch, using view-dependent
2D observations without precomputed cross-view feature
matching. Comprehensive experiments on the DTU and
BlendedMVS datasets demonstrate our NEAT’s superiority
over state-of-the-art alternatives for 3D wireframe recon-
struction. Moreover, the distilled 3D global junctions by
NEAT, are a better initialization than SfM points, for the
recently-emerged 3D Gaussian Splatting for high-fidelity
novel view synthesis using about 20 times fewer initial 3D
points. Project page: https://xuenan.net/neat.

*Corresponding author.

1. Introduction

In this paper, we explore the field of multi-view 3D
reconstruction, drawing inspiration from the paradgim of
the primal sketch proposed by D. Marr [19]. Our objective
is to develop a concise yet precise representation of 3D
scenes, derived from multi-view images with known camera
poses. Specifically, our focus is on wireframe representa-
tions [44, 46, 51, 52], which define the boundary geometry
of scene images through line segments and junctions as
the 2D wireframe representation. We dedicate our efforts
to advancing the reconstruction of 3D wireframes based
on their 2D counterparts detected in multi-view images, as
shown in Fig. 1 and Fig. 2.

The challenge of multi-view 3D wireframe reconstruc-
tion has been previously explored within the realm of line-
based 3D reconstruction [12, 17, 39], primarily following
the feature triangulation pipelines [29], which heavily rely
on the accuracy of multi-view feature correspondences.
Various methods have been developed to enhance this ac-
curacy [23, 24, 39]. However, a significant challenge arises
from view-dependent occlusions of line features: when
projecting a 3D line segment onto 2D images, the endpoints
of the line segment may be truncated in the 2D projections
by chance. Such discrepancies can severely impact the
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(a) Imagess & 2D Wireframes (b) 3D Wireframe from Posed Images

Figure 2. Illustrative Overview of the problem of 3D wireframe
reconstruction. Given a set of posed images and the corresponding
2D wireframe detection results in (a), the proposed NEAT esti-
mates the 3D wireframe representation of the scene in (b).

accuracy of the reconstruction, as the matching process
relies on these endpoints to accurately represent the 3D
geometry. These matching-based methods often result in
incomplete 3D line models or suffer from fragmentation and
noise, depending on the choice of 2D detectors [25, 36, 43–
46] and matchers [23, 24] of line segments, as in Fig. 1.
Dense Fields of Sparse Geometries. We challenge the
explicit matching pipeline of 3D wireframe reconstruction
from the perspective of dense field representation. We draw
inspiration from the “implicit matching” capacity [42] of
the emerging neural implicit fields [2, 22, 49] for 3D dense
representations (e.g., density fields and signed distance
functions), and propose to render 3D line segments from
multi-view 2D observations. Such a basic idea roughly
works by leveraging a coordinate MLP to render 3D line
segments from 2D observations, but remains problematic
due to the entailed view-by-view rendering of 3D line
segments in two-fold: (1) the 2D line segments of a detected
wireframe often undergo localization errors, resulting in
erroneous 3D line segment predictions via view-by-view
rendering, and (2) simply stacking the rendered 3D line
segments from all views leads to a very large amount of 3D
line segments, requiring non-trivial merging/fusion to form
a 3D wireframe representation of the scene.
Line-to-Point Attraction in Neural Fields. We tackle the
above issues by leveraging the line-to-point attraction that
inherently persists in the wireframe representation, in which
every endpoint of a 3D line segment should be in the set
of 3D junctions of the underlying scene. Based on this, we
formulate the two types of entities of 3D wireframes, the 3D
line segments and junctions, in a novel rendering-distilling
formulation, where the sparse set of 3D line segments
are represented in a dense neural field while the junctions
play the role of distilling a sparse wireframe structure
from the fields. Our work is entitled as NEural Attraction
(NEAT) for 3D wireframe reconstruction, mainly because
of the neural design of the 3D line segments and junctions,
and of leveraging the line-to-point attraction to enable
joint optimization of the neural networks from multi-view
images and its 2D wireframe detection results. To the best

of our knowledge, we accomplish the first matching-free
solution of 3D wireframe/line reconstruction by learning
and optimizing from random initializations without any 3D
scene information required.

In experiments, we showcase that our matching-free
NEAT solution significantly outperforms all the matching-
based approaches with accurate yet complete 3D wire-
frame reconstruction results on both the DTU [1] and
BlendedMVS [47] datasets, working well in both straight-
line dominated scenes and curve-based (or polygonal line
segment dominated) scenes that challenges the traditional
matching-based approaches, paving a way towards learning
3D primal sketch in a more general way. Furthermore, we
show that the neurally perceived 3D junctions is applicable
to the recently proposed 3D Gaussian Splatting [13] as
better initialization than the COLMAP [29] with about 20
times fewer points, showing case the potential of structured
and compact 3D reconstruction.

2. Related Work
Structured 3D Reconstruction in Geometric Primitives.
Because of the inherent structural regularities for scene
representation conveyed by line structures [10, 16, 19, 28,
31] and planar structures [33, 34], there has been a vast body
of literature on line-based multiview 3D reconstruction
tasks including single-view 3D reconstruction [18, 33],
line-based SfM [3, 27], SLAM [26, 38], and multi-view
stereo [12, 17, 39] based on the theory of multi-view
geometry [11]. Due to the challenge of line segment
detection and matching in 2D images, most of those studies
expected the 2D line segments detected from input im-
ages to be redundant and small-length to maximize the
possibility of line segment matching. As for the estima-
tion of scene geometry and camera poses, the keypoint
correspondences (even including the 3D point clouds) are
usually required. For example in Line3D++ [12], given the
known camera poses by keypoint-based SfM systems [29,
30, 32, 40], it is still challenging though to establish
reliable correspondences for the pursuit of structural reg-
ularity for 3D line reconstruction. For our goal of 3D
wireframe reconstruction, because 2D wireframe parsers
aim at producing parsimonious representations with a small
number of 2D junctions and long-length line segments,
those correspondence-based solutions pose a challenging
scenario for cross-view wireframe matching, thus leading
to inferior results than the ones using redundant and small-
length 2D line segments detected by the LSD [36]. To this
end, we present a correspondence-free formulation based
on coordinate MLPs, which provides a novel perspective to
accomplish the goal of 3D wireframe reconstruction from
the parsed 2D wireframes.
Neural Rendering for Geometric Primitives. In recent
years, the emergence of neural implicit representations [2,



20, 21, 48] have greatly renown the 3D vision community.
By using coordinate MLPs to implicitly learn the scene
geometry from multi-view inputs without knowing either
the cross-view correspondences or the 3D priors, it has
largely facilitated many 3D vision tasks including novel
view synthesis, multi-view stereo, surface reconstruction,
etc. Some recent studies further exploited the neural
implicit representations by (explicitly and implicitly) taking
the geometric primitives such as 2D segmentation masks
into account to lift the 2D detection results into 3D space
for scene understanding and interpretation [8, 15, 37, 41].
Most recently, nerf2nerf [9] exploited a geometric 3D
representation, surface fields as a drop-in replacement for
point clouds and polygonal meshes, and takes the keypoint
correspondences to register two NeRF MLPs. Our study
can be categorized as the exploration of geometric prim-
itives in neural implicit representation, but we focus on
computing a parsimonious representation by using the most
fundamental geometric primitives, the junction (points) and
line segments, to provide a compact and explicit represen-
tation from coordinate MLPs.

3. NEAT of 3D Wireframe Reconstruction
In this section, we formulate the problem of 3D wireframe
reconstruction, lying on the high-level idea of approaching
the goal of using volume rendering instead of the explicit
line segment matching to build a unified 3D computational
representation of line segments and junctions from the 2D
detected wireframes.
Problem Statement. For the problem illustrated in Fig. 2,
we present our approach for 3D wireframe reconstruction
from n-view posed images, {Ii}ni=1. Each image Ii is
characterized by intrinsic and extrinsic matrices. We use
the HAWPv3 model [46] to detect 2D wireframes in these
images, represented as undirected graphs Gi = (Vi, Ei).
The goal is to construct a 3D wireframe graph G = (V, E),
translating these 2D wireframes into a 3D representation
with V as 3D junctions and E as the 3D line segments.
Method Overview. Our NEAT method is built on the
VolSDF framework [49] with two primary neural compo-
nents: (1) a Neural Attraction Field for 3D line segments,
and (2) a Global 3D Junction Perceiver (GJP). These
components work jointly to create NEAT 3D wireframe
models from the 2D wireframe observations. We start
by learning a dense representation of 3D line segments
from 2D wireframes using the Neural Attraction Field, as
visualized in Figure 3. This is followed by the Global
3D Junction Perceiver, which identifies a set of 3D junc-
tions. As a final step of the wireframe reconstruction,
the perceived 3D junctions play in a distillation role to
clean up the optimized NEAT field. In implementation, we
adopt a simple design for the MLPs used in the SDF and
radiance field, aligned with VolSDF specifications. For the

3D Line Segments

NEAT MLP for 3D Line Segments N Learnable Global Junctions

(898 Junctions)

Junction-Line 
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NEAT Wireframe Distilation

Figure 3. The proposed NEAT field learning framework for 3D
wireframe reconstruction. In the top, the neural design of NEAT
MLP and the predefined N global junctions are illustrated, these
two components are “attracted” by the junction-to-line bipartite
matching, resulting a rendering-yet-distillation formulation to
render 3D line segments in NEAT MLP as a dense representation
of 3D line segments, and then distilled by the learned 3D global
junctions for wireframe reconstruction.

NEAT field, a 4-layer MLP renders the 3D line segments.
Additional implementation details and hyperparameters are
outlined in the Appendix B.3.

3.1. Rendering 3D Line Segments from 2D

We propose to leverage the power of “implicit matching”
ability of neural fields to obtain 3D line segments. Our
method is built on the basic formulation of VolSDF [49]
that renders a ray xt = c+ t ·v emanating from the camera
location c ∈ R3 with the (unit) view direction v ∈ R3 to
estimate the image appearance by,

Î(c, v) =

∫ ∞

0

T (t) · σ(xt) · r(xt, v,n(xt), z(xt))dt, (1)

where r(·) is the radiance of the ray xt, and T (t) is the
transmittance T (t) = exp−

∫ t

0
σ (x(s)) ds along the ray

from camera center to t, the density field σ(·) is transformed
by the signed distance function dΩ(x) of an implicit field
using,

σ(x) =
1

β
Ψβ(−dΩ(x)), (2)

with the learnable scaling factor β. As for the optimization
of SDF and radiance fields, the image loss Limg between
the rendered image Î and its corresponding ground-truth I,
and Eikonal loss Leik for SDF network are used.

Neural Attraction Fields. In our NEAT method, we
adapt volume rendering, typically used for optimizing dense
3D representations like density fields and SDFs, to focus on
3D line segments and junctions. Our approach is inspired
by the dense attraction field representations used in 2D line
segment detection and wireframe parsing, as extensively
researched in previous studies [44, 46]. As illustrated in



Fig. 3 using a synthetic example, we utilize the attracted
pixels of 2D line segments in each image to define the rays
for 3D rendering. For each segment, its attracted pixels
are projected perpendicularly onto the 2D segment. This
projection is confined within the endpoints of the segment
with respect to a predefined distance threshold, τray. Each
pixel is associated with its nearest line segment, ensuring
a dense coverage of supporting areas for the segments.
This approach facilitates the volume rendering of 3D line
segments by providing a robust underlying structure.

In our approach, we model a 3D line segment at
any point xt along a ray. The endpoint displacements
(∆x1

t ,∆x2
t ) relative to xt are computed as,

(∆x1
t ,∆x2

t ) = L(xt) ∈ R2×3, (3)

yielding the two endpoints of the segment by (xt +
∆x1

t ,xt +∆x2
t ). The mapping function L(·) is parameter-

ized by a 4-layer coordinate MLP. It incorporates the view
direction v, the surface normal n(·) from the SDF gradient,
and a 128-dimensional feature vector z(xt) from the SDF
network, reflecting the view-dependent nature of 2D line
segments. For rendering a 3D line segment, we apply the
equation,

(xs,xt) =

∫ ∞

0

T (t)σ(t) (L(xt) + xt) dt. (4)

Here, xs and xt are the 3D endpoints for the attraction pixel
x of a 2D line segment l̈ = (ȷ1, ȷ2) ∈ Vi × Vi of the i-th
view, calculated along its ray xt.

According to the pixel-to-line relationship defined by
2D attraction field representations, the rendered 3D line
segment (xs,xt) of a ray xt should be consistent with
l̈ = (ȷ1, ȷ2), thus resulting in a loss function between the
projected 2D endpoints by viewpoint projection Π(·) and l̈
in,

Lneat = ∥Π(xs)− ȷ1∥2 +
∥∥Π(xt)− ȷ2

∥∥2 . (5)

The proposed Neural Attraction Fields of 3D line segments
is optimized together with SDF and the radiance field
by minimizing the loss functions stated above, forming a
querable and dense representation of 3D line segments.

Minimizing the loss functions Lneat, Limg, and Leik

allows us to derive a geometrically meaningful but noisy
3D line cloud from multi-view images, as demonstrated
in Fig. 4 using both a synthetic example and a real case
from the DTU-24 scene [1]. The absence of explicit line
matching across multiple views leads to duplication of the
same 3D line segments, each with its own view-dependent
prediction errors. In the following section, we discuss how
this redundancy and noise, while initially seeming detri-
mental, actually provide a strong inductive bias towards
achieving the goal of 3D wireframe reconstruction.

(a) 898 Lines (100 Views) (b) 6731 Lines (49 Views)

Figure 4. Two cases of learned noisy and redundant 3D line
segments by line segment rendering. The case (a) takes the images
and line segments introduced in Fig. 2a, and the case (b) is a real-
world case of DTU-24 scene.

3.2. Neural 3D Junction Perceiver

This section introduces our method to “clean up” the noisy
and redundant 3D line cloud created by Neural Attraction
Fields. Leveraging the relationship between 3D junctions
and line segments in wireframes, we propose a neural and
joint optimization approach, central to our NEAT method.
Using the 3D line cloud, denoted by Lneat, a query-based
learning method is designed for perceiving 3D junctions
(Eq. (6)) via junction-line attraction, which plays the role
of distillation for 3D wireframe reconstruction.
Global 3D Junction Percieving. Our 3D line segment
rendering inherits the dense representation as the density
field and the radiance field. To achieve parsimonious
wireframes, we propose a novel query-based design to
holistically perceive a predefined sparse set of N 3D
junctions by

QN×C
MLP−−→ JN×3, (6)

where QN×C are C-dim latent queries (randomly ini-
tialized in learning). Surprisingly, as we shall show in
experiments, the underlying 3D scene geometry induced
synergies between JN×3 and the above 3D line segment
rendering integral enable us to learn a very meaningful
global 3D junction perceiver.

In the absence of well-defined ground-truth for learning
3D junctions, we use the endpoints of redundant rendered
3D line segments (Sec. 3.1) as noisy labels. By reshaping
the line cloud Lneat into Jneat ∈ R2M×3, our process
involves two steps: (1) clustering J2M×3 using DBScan to
yield pseudo 3D junctions Jcls ∈ Rm×3 with m < 2M
clusters; (2) applying bipartite set-to-set matching between
the perceived junctions JN×3 (Eq. (6)) and Jcls using the
Hungarian algorithm. The matching cost is based on the ℓ2
norm between 3D points. We define J = {(Jk,Jcls

ik
)|k =

1, . . . ,K} as the set of matched junctions, where K =
min(N,m), and ik is the index of the k-th matched pseudo
label Jcls

ik
. Then, our goal is to minimize the distance



(a). Random Inits. (b). 24K iterations (c). Final iteration

Figure 5. Optimization Process of 3D Junction Perceiving (top)
from the noisy 3D line cloud (bottom) on the DTU-23 scene.

between matched junctions and their corresponding pseudo
labels using

Ljc(Jk,Jk) = ∥Jk − Jk∥1+λ · ∥Π(Jk)−Π(Jk)∥1 , (7)

where Π() is the 3D-to-2D projection, and λ the trade-off
parameters (e.g. 0.01 in our experiments).
Joint Optimization. In our final implementation, we
refine our approach by jointly optimizing the NEAT field
and the 3D junction perceiver. This optimization involves
minimizing all aforementioned loss functions in a weighted
sum, which allows for dynamic distillation of 3D junctions
from the noisy 3D line cloud generated by the NEAT field.
The total loss function, Ltotal, is expressed as:

Ltotal = Limg + λeLeik + λnLneat + λjLjc, (8)

where Limg and Leik are as defined in [49]. The weights
λn, λe, and λj are all set to 0.01. As depicted in Figure
5, this optimization process continually refines the global
3D junctions by extracting them from the 3D line cloud of
NEAT field at each iteration, all trained from scratch.

3.3. NEAT Wireframe Distillation using Junctions

After training, we acquire N 3D junctions JN×3 and M
3D line segments Lneat ∈ RM×2×3. The line segments are
indexed by 3D junctions based on their spatial relationship,
assigning each segment Li

neat a global ID within (u, v) ∈
{0, . . . , N − 1} × {0, . . . , N − 1}, with u < v. Indexing
is informed by endpoint distances. Segments with angular
distances over 10 degrees or perpendicular distances above
0.01 units in 3D space are deemed ”too far” and removed,
ensuring alignment with the 3D junctions. Further details
are available in Appendix B.

Endpoint indexing significantly reduces the number of
3D line segments. Segments like (xs

i ,x
t
i) and (xs

j ,x
t
j)

sharing the same junction IDs (ui, vi) = (uj , vj) = (u, v)
are grouped under one global line segment defined by
(u, v). We represent these grouped segments as Lu,v =
{l1u,v, . . . , lTu,v} ∈ RT×2×3, where T = Tu,v indicates the

count of segments in Lu,v . For convenience, the global line
segment for index (u, v) is denoted as l0u,v = (Ju, Jv).
Junctions not indexed by more than one line segment in
Lneat are marked as inactive.
The 3D Wireframe. After indexing the 3D line segments
Lneat with global junctions, we form the graph G = (V, E)
composed of active global junctions and their index pairs.
To refine this graph, we remove isolated junctions and line
segments, resulting in the final 3D wireframe G, where V ⊂
R3 represents the vertices and E ⊂ Z2 the edges.
Least Square Optimization of 3D Junctions. Given that
3D junctions are derived from a noisy 3D line cloud, we
optimize them by leveraging their relationships with global
line segments (Ju, Jv) and corresponding 3D line segments
L(u, v). This alignment aims to match junctions with their
supporting 3D line segments. The optimization is framed
as a non-linear least squares problem with the cost function
L(J), defined as:

L(J) =
∑
(u,v)

Tu,v∑
i=1

dang(l
0
u,v, l

i
u,v)

2+dperp(l
0
u,v, l

i
u,v)

2, (9)

where dang and dperp represent the angular and perpendic-
ular distances between two 3D line segments, respectively.
The optimization details are provided in Appendix C.
The Final Wireframe. After leveraging the least square
optimization to adjust the position 3D junctions, we further
remove the isolated junctions and the isolated line segments
in G of which their projection to 2D space are not supported
by any line segment of the 2D wireframe observations.
Here, the criterion of the support is defined by the minimum
angular distance and the perpendicular distance between the
projected 3D line segment and the 2D line segment is not
more than 10 degree and 5 pixels, respectively. After the
filtering, we adjust the actived 3D junctions by querying
SDF, see Appendix C for details.

4. Experiments
In experiments, we mainly testify our NEAT on two datasets
(i.e., the DTU dataset [1] and the BMVS dataset [47])
for real-scene multiview images with known camera poses.
In addition to those two datasets, in Appendix D, the
experiments on the ABC dataset [14] evaluated by using
the 3D wireframe annotations further verified our proposed
NEAT approach for the 3D wireframe representation.

4.1. Baselines, Datasets and Evaluation Metrics

We take the well-engineered Line3D++ [12] and the
recently-proposed LiMAP [17] as the baselines to make
quantative and qualitative comparisons, all of which are
mainly designed for line-based 3D reconstruction based
on two-view line matching results. Because our target is



Figure 6. Visualization of 3D Wireframe Reconstruction on the 12 scenes from the DTU dataset [1] and the 4 scenes from the
BlendedMVS dataset [47]. For each scene, we show its line segment view (by hiding the junctions) in black, and the wireframe view
by coloring the junctions in blue. For the comparison, please see our video.

Table 1. Evaluation Results on the DTU and BlendedMVS datasets for the reconstructed 3D wireframes. ACC-J and ACC-L are the
evaluation for junctions and line segments. For Line3D++@HAWP, LiMAP and ELSR, all the endpoints of line segments are treated as
junctions.

NEAT (Ours) LiMAP [17] Line3D++@HAWP
Scan ACC-J ↓ ACC-L COMP-L ↓ #Lines ↑ #Junctions ACC-J ↓ ACC-L COMP-L ↓ #Lines ↑ ACC-J ↓ ACC-L ↓ COMP-L ↓ #Lines ↑

DTU Dataset [1]
Avg. 0.7718 0.8002 6.1064 624 503 1.0944 0.8547 7.7756 231 0.9019 0.8133 8.5086 249

16 0.8263 0.7879 5.4135 729 554 1.0385 0.7898 6.0420 335 0.7957 0.6992 6.9052 388
17 0.7754 0.6695 5.0498 738 546 1.1015 0.8804 5.8212 388 0.8816 0.7778 7.6257 395
18 0.6429 0.6868 5.3796 701 596 0.9950 0.8253 7.0154 287 0.7894 0.7528 7.7082 305
19 0.6989 0.6923 4.6529 809 510 0.7689 0.7110 7.9461 160 0.6815 0.7953 6.9776 330
21 0.9042 0.6923 4.6529 809 571 1.1011 0.8884 5.9821 319 0.9064 0.7953 6.9776 330
22 0.6343 0.6910 5.0871 758 596 0.8998 0.7353 6.8567 281 0.7494 0.7079 7.8014 328
23 0.5882 0.6193 5.5992 771 597 1.0561 0.8293 6.5078 377 0.8005 0.7356 8.2679 320
24 0.6386 0.5944 5.9104 860 549 1.0314 0.8293 6.5078 377 0.7940 0.6807 7.6886 366
37 1.4815 1.0856 7.5362 420 405 1.2721 1.2352 8.6413 120 1.1796 1.0287 10.2244 60
40 0.6298 1.0354 8.7825 137 469 1.2108 0.8327 9.9988 41 0.8486 0.6877 10.1206 83
65 0.7212 1.0354 8.7825 137 171 1.0469 0.5071 11.1936 7 1.1008 1.0697 11.1519 23

105 0.7204 1.0127 6.4296 621 478 1.6108 1.1929 10.7943 90 1.2957 1.0286 10.6539 61

BlendedMVS Dataset [47]
Avg. 0.1949 0.1802 6.4621 602 514 0.3712 0.3169 6.9415 313 0.3743 0.3545 6.8760 724

1 0.0365 0.0404 3.7253 653 565 0.0488 0.0651 5.0457 226 0.0682 0.0650 5.3625 691
2 0.1715 0.1585 8.2943 328 343 0.3478 0.2817 8.7663 195 0.4327 0.4174 8.8864 396
3 0.2564 0.2165 7.5600 931 664 0.3796 0.3162 7.5366 467 0.3795 0.3582 7.3192 931
4 0.3153 0.3055 6.2686 509 483 0.7086 0.6045 6.4174 365 0.6171 0.5774 5.9359 876

3D wireframe reconstruction instead of 3D line segment
reconstruction, for fair comparisons, we use HAWPv3 [46]
as the alternative for 2D detection in the use of Line3D++

and LiMAP. For those baselines, we use their official
implementation for 3D line segments reconstruction.

DTU [1] and BlendedMVS [47] Datasets. These two

https://youtu.be/qtBQYbOpVpc


datasets were mainly designed for multiview stereo (MVS),
but they are applicable to 3D wireframe reconstruction as
they provided high-quality 3D point clouds as annotations.
For our experiments, we run our method on 12 scenes from
DTU datasets and 4 scenes from BlendedMVS datasets.
For the quantitative evaluation, we first convert the recon-
structed wireframe model by NEAT (or the 3D line segment
model by baselines) into the point cloud by sampling 32
points on each line segment and computing the ACC metric
to make comparisons. Because the reconstructed 3D wire-
frames (and line segments) are rather sparse than the dense
surfaces, the COMP metric used for comparison would be
less informative than ACC. Therefore, we additionally use
the number of reconstructed 3D line segments and junctions
as the reference of completeness.

4.2. Main Comparisons

We compare our NEAT approach with three baselines on
the scenes from DTU and BlendedMVS datasets, which
include both the straight-line dominant scenes and some
curve-based ones. In Tab. 1, we quantitatively report the
ACCs for both 3D line segments and their junctions (or
endpoints), as well as the number of geometric primitives.
Compared to the baseline Line3D++@HAWP that takes
the same 2D wireframes as input, our NEAT significantly
outperforms it in all metrics, which indicates that NEAT is
able to yield more accurate and complete 3D reconstruction
results than L3D++ for HAWP inputs. Fig. 6 visualizes the
reconstructed 3D wireframes for the evaluated scenes on the
DTU and BlendedMVS datasets.

4.3. Ablation Studies

In our ablation study, two scenes (i.e., DTU-24 and DTU-
105) are used as representative cases to discuss our NEAT
approach. In the first, we qualitatively show the NEAT lines
(i.e., raw output of 3D line segments by querying the NEAT
field), the initial reconstruction by binding the queried
NEAT lines to global junctions, and the final reconstruction
results by the visibility checking. Then, we discuss our
NEAT approach in the following two aspects: (1) the pa-
rameterization of NEAT Fields and (2) the view dependency
issue for junction perceiving. For more ablation studies
for the hyperparameter setting, especially for the number
of global junctions, please refer to Appendix C.
The Process of Wireframe Reconstruction. Fig. 7 shows
the three components for wireframe reconstruction. In the
first component, we query all possible 3D line segments
from the optimized NEAT field. In the second component,
the queried 3D line segments are binding to the global
junctions. In the third step, by leveraging the non-linear
optimization and a relaxed visibility checking, the unstable
3D line segments are removed from the initial wireframe
models. Benefitting from the proposed novel mechanism of

(a) 5905 lines (b) 1399 lines (c) 526 lines

(d) 10394 lines (e) 1102 lines (f) 621 lines

Figure 7. Left: NEAT lines (by coordinate MLP); Middle:
initial wireframes (without visibility checking); Right: the final
wireframes (with visibility checking) in the right.

Table 2. Quantatively evaluation results for ablation studies on the
DTU-24 and DTU-105 scenes.

View Dir. Clustering ACC (J)↓ ACC (L)↓ # Lines # Junctions

DTU-24
No No 0.925 0.847 744 531
Yes No 0.796 0.678 827 475
Yes Yes 0.639 0.594 860 549

DTU-105
No No 0.822 1.209 607 499
Yes No 0.749 1.154 557 408
Yes Yes 0.720 1.013 621 478

learning global 3D junctions, we largely simplified the way
of removing duplicated and unreliable line segments with-
out using either the known 3D points or the complicated line
segment matching.
Parameterization of NEAT Fields. We found that the
parameterization of NEAT Fields learning is playing in a
vital role in the wireframe reconstruction. Even though
our NEAT field aims at representing 3D line segments by
the displacement vectors of the 3D points, the localization
error in the detected 2D wireframes will possibly lead to
some 3D line segments that cannot be well supported by
high-quality 2D detection results missing. The information
on view direction is a key factor to avoid this issue and
yield more complete results. According to Tab. 2, the
parameterization without the viewing directions will result
in a coarser reconstruction with larger ACC errors for both
3D junctions and line segments while having fewer line
segments although the number of global junctions is similar
to the final model.
Clustering in Junction Perceiving. The DBScan [7]
clustering is a key factor in accurately perceiving global
junctions from the view-dependent coordinate MLP of
the NEAT field. To verify this factor, we ablated the
DBScan clustering to optimize MLPs on DTU-24 and
DTU-105. Quantitatively reported in Tab. 2, although
the parameterization of viewing direction largely reduced
the ACC errors for both reconstructed junctions and line
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Figure 8. NEAT is applicable to 3D Gaussian Splatting framework
to obtain more meaningful 3D Gaussian ellipsoids for better
rendering results using 20 times fewer initial 3D points.

segments, the number of 3D junctions and line segments is
also significantly reduced. When we enable the clustering
during optimization, the lower-quality 3D local junctions
(from the NEAT field) can be filtered, thus leading to an
easy-to-optimize mode to yield more 3D junctions and line
segments with fewer reconstruction errors.

4.4. NEAT for 3D Gaussian Splatting

Recently, 3D Gaussian Splatting [13] has become popular
in neural rendering, owing to its computational efficiency
and high-quality rendering. Our proposed NEAT method
effectively represents 3D scenes using a limited number
of junctions and line segments in wireframe format. We
explored whether these reconstructed 3D junctions and line
segments enhance novel view synthesis in 3D Gaussian
Splatting [13] and found positive results. As demonstrated
in Fig. 8, the final 3D Gaussian ellipsoids, optimized
using different initialization (i.e., SfM Points and NEAT
junctions), show that using only 549 points from the 3D
junctions can yield more accurate geometry of Gaussian
ellipsoids, thus improving rendering quality. Due to space
constraints, further rendering experiments using NEAT’s
output are detailed in the Appendix E.

4.5. Failure Mode and Limitations

Volume Rendering of NEAT Fields. Our method, based
on VolSDF [49], faces inherent difficulties in inside-out
scenes for neural surface rendering, similar to recent stud-
ies [50]. Overcoming these challenges, though possible
with techniques like pre-trained monocular depth and nor-
mal maps [6], is beyond this paper’s scope and reserved for
future work.
2D Detection Results are Critical. Another critical issue
is the quality of 2D wireframe detection. Failures in
the HAWP model [46] directly impact our 3D wireframe
reconstruction and parsing goals. Fig.9 illustrates a failure
case from the ScanNet[5] dataset, highlighting issues like
motion blur affecting wireframe detection and leading to
inaccuracies in 3D line segments. Despite these challenges,
our global junctions (Fig. 9d) show potential in learning
from blurry 2D wireframes, suggesting new insights into
the relationship between junctions and line segments in
wireframe representation.

(a) Groundtruth 3D Mesh (b) Blur Images and Wireframes

(c) Final Wireframe Model (d) Global 3D Junctions

Figure 9. A Representative Failure Mode on ScanNet.

The Scalability Issue. Our proposed method is currently
limited by the predefined number of 3D global junctions
(e.g. 1024 junctions), which would be challenged in large-
scale scenes that apparently contain much more 3D junc-
tions. Though this limitation can be alleviated by leveraging
a divide-and-conquer strategy like Block-NeRF [35], the
number of junctions should be scene-dependent and be
automatically determined instead of being treated as a
predefined hyperparameter in the future work.

5. Conclusion

This paper studied the problem of multi-view 3D wireframe
parsing (reconstruction) to provide a novel viewpoint for
compact 3D scene representation. Building on the basis
of the volumetric rendering formulation, we propose a
novel NEAT solution that simultaneously learns the co-
ordinate MLPs for the implicit representation of the 3D
line segments, and the global junction perceiving (GJP)
to explicitly learn global junctions from the randomly-
initialized latent arrays in a self-supervised paradigm.
Based on new findings, we finally achieve our goal of
computing a parsimonious 3D wireframe representation
from 2D images and wireframes without considering any
heuristic correspondence search for 2D wireframes. To
our knowledge, we are the first to achieve multi-view 3D
wireframe reconstruction with volumetric rendering. Our
proposed novel junction perceiving module opens a door
to characterize the scene geometry from 2D supervision in
structured point-level 3D representation.
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NEAT: Distilling 3D Wireframes from Neural Attraction Fields

Supplementary Material

The supplementary document is summarized as follows:

• Appx. A gives a summary of the supplementary video.

• Appx. B elaborates on the technical details (introduced
in Sec. 3.2 of the main paper) of NEAT optimization.

• Appx. C supplies the details for the final step of distil-
lation for 3D wireframe reconstruction (introduced in
Sec. 3.3 of the main paper).

• Appx. D presents the additional experiments on the
ABC dataset [14] to discuss the performance given the
ground-truth annotations of 3D wireframes.

• Appx. E quantitatively reports the potential of NEAT
for view synthesis with 3D Gaussian Splatting on the
DTU dataset.

• Appx. F shows the miscellaneous stuff.

A. Video

In our supplementary video, we begin by demonstrating the
core concepts of our research. Using a basic object from
the ABC dataset as an illustrative example, we showcase
the 3D line segments learned through the NEAT field, the
functionality of the global junction perceiving module, and
the construction of the final 3D wireframe model. Fol-
lowing this, the video highlights the learning of redundant
3D line segments and the optimization process for global
junctions, using the DTU-24 dataset as a case study. The
video concludes with qualitative evaluations on both the
DTU and BlendedMVS datasets, providing visual support
to the quantitative analyses of the main paper.

B. Optimization of NEAT

(a) Input images (b) 2D Wireframes & rendering pixels

Figure 10. A toy example on the ABC dataset [14] for the
foreground pixels defined by the detected 2D wireframes.

MR: 90.88% MR: 91.42% MR: 89.32%
(a). Foreground Pixels defined by 2D wireframes (τd = 5)

PSNR: 25.46 PSNR: 26.31 PSNR: 21.37

(b). Rendered Images by NEAT

PSNR: 27.40 PSNR: 28.52 PSNR: 26.62

(c). Rendered Images by VolSDF [49]

Figure 11. A comparison for volumetric rendering learned from
wireframe-related rays (pixels) vs. the vanilla ray sampling. In (a),
we show the 2D line segments detected by HAWPv3 [46] and the
used foreground pixels in each view. “MR” denotes the mask ratio
(the number of foreground pixels among all the pixels). In (b), we
show the corresponding views rendered by NEAT that are learned
by the foreground pixels in (a). In the bottom (c), we show the
rendered images by VolSDF [49] as the reference. In (b) and (c),
the PSNR values are marked at the bottom for each view.

B.1. Details on Line Segment Rendering

Our method renders 3D line segments based on the detected
2D wireframes in each view, distinguishing itself from
conventional volume rendering approaches that utilize all
pixels (rays) for rendering. As demonstrated in Fig. 10
with a toy example from the ABC dataset, only pixels with
“white” colors are engaged in the rendering process of 3D
line segments. This technique is inspired by the attraction
field representations [25, 43–46], where the involved pixels
are determined by the perpendicular distance between a
point and a line segment. We set a threshold, τray (as
mentioned in Sec. 3.1 of our main paper), to differentiate
the rendering pixels as foreground while disregarding the
non-rendering pixels as background. Practically, τray is
usually set to 5 for training/optimization, and reduced to 1
to minimize computational costs. We refer to this approach
as wireframe-driven ray sampling.

To demonstrate the effectiveness of wireframe-driven ray
sampling, we conducted a series of experiments on scene
24 from the DTU dataset [1]. Fig. 11 illustrates

https://youtu.be/qtBQYbOpVpc


Table 3. The influence of wireframe reconstruction results from
different distance thresholds. The larger τd value is, the more line
segments are involved in the optimization/learning.

ACC-J↓ ACC-L↓ COMP-L↓ #Lines #Junctions MR PSNR

τd = 1 0.853 0.764 6.137 785 540 97.49% 17.79
τd = 5 0.639 0.594 5.910 860 528 89.70% 21.55
τd = 20 0.578 0.596 6.158 694 508 66.10% 24.68

the feasibility of optimizing coordinate MLPs using this
sampling technique. As depicted in Fig. 11(a), by masking
over 80% of the pixels (using a distance threshold of 5
pixels), we can still effectively optimize coordinate MLPs,
leading to the reasonable outcomes shown in Fig. 11(b).

In addition to rendering results, we observed that in-
creasing the distance threshold leads to a reduction in the
number of line segments and junctions. As detailed in
Tab. 3, setting the distance threshold to τd = 20 results in
fewer 3D lines and junctions. Although the ACC errors are
marginally reduced, there is an increase in completeness.
Conversely, when the distance threshold τd is set to 1, a
performance degradation is noted across all metrics due to
insufficient supervision signals.

B.2. The Number of Global Junctions

The number of global junctions is determined heuristically
to encompass all potential 3D junctions. Based on ob-
servations from both the DTU and BlendedMVS datasets,
where the detected 2D line segments are in the hundreds,
we set the estimated number of 3D junctions to 1024. In
Tab. 4, we present experiments conducted on the DTU-24
scene with varying numbers of junctions, denoted as N , to
assess performance differences. The results indicate that
increasing the number of possible global 3D junctions to
a larger value (e.g., N = 2048) yields only a marginal
increase in the count of learned 3D line segments and
junctions in the final wireframe models. Conversely, a
smaller N tends to result in incomplete 3D wireframe
models.

N # 2D Juncs. # 3D Junctions # 3D Lines ACC-J ACC-L COMP-L

1024 (default) 212 (min)
297 (max)
258.2 (avg)

549 860 0.639 0.549 5.910

N = 128 99 93 0.422 0.440 8.541
N = 512 397 641 0.526 0.574 6.302
N = 2048 624 983 0.656 0.599 5.849

Table 4. The performance influence of wireframe reconstruction
from different configuration of the number of 3D junctions during
optimization.

B.3. Additional Implementation Details

Network Architecture. The coordinate MLPs used in our
NEAT approach are derived from VolSDF [49], which con-
tains three coordinate MLPs for SDF, the radiance field, and

the NEAT field. For the MLP of SDF, it contains 8 layers
with hidden layers of width 256 and a skip connection
from the input to the 4th layer. The radiance field and the
NEAT field share the same architecture with 4 layers with
hidden layers of width 256 without skip connections. The
proposed global junction perceiving (GJP) module contains
two hidden layers and one decoding layer as described in
the code snippets of Sec. 1 in our main paper.

Hyperparameters. The distance threshold τd about the
foreground pixel (ray) generation is set to 5 by default.For
the number of global junctions (i.e., the size of the latent),
we set it to 1024 on the DTU and BlendedMVS datasets.
When the scene scale is larger (e.g., a scene from ScanNet
mentioned in Fig. 5 of the main paper), the number of
global junctions is set to 2048. For DBScan [7], we use the
implementation from sklearn package, set the epsilon
(for the maximum distance between two samples) to 0.01
and the number of samples (in a neighborhood for a point
to be considered as a core point) to 2.

C. The Final Distillation Step of NEAT
This section elaborates on the final distillation step required
in our NEAT methodology for 3D wireframe reconstruc-
tion, with a particular focus on the extensive use of global
junctions. We aim to provide a detailed insight into this
crucial phase of the NEAT process.

To begin with, let us consider the challenge inherent
in the junction-driven finalization of NEAT. As depicted
in Fig. 12, using a toy ABC scene as an example, we
observe that a considerable number of 3D line segments
are rendered and aggregated across different views. Con-
currently, 3D junctions are dynamically distilled from the
NEAT fields. While a simple approach to combine these 3D
junctions with the redundant 3D line segments might seem
viable, it is critical to address the potential misalignments
between the junctions and line segments. To resolve this
issue, we employ a least squares optimization combined
with an SDF-based refinement scheme. This approach is
designed to precisely adjust the position of 3D junctions,
thereby ensuring an accurate and coherent reconstruction of
the 3D wireframe.

C.1. Least Square Optimization

To be convenient for readers, we copy Eq. (9) in our main
paper to Eq. (10),

L(J) =
∑
(u,v)

Tu,v∑
i=1

dang(l
0
u,v, l

i
u,v)

2 + dperp(l
0
u,v, l

i
u,v)

2,

(10)
which is the main objective function to adjust the junc-
tion positions according to the observation from the op-



Table 5. An Ablation study of the SDF-based 3D Junction Refinement on the DTU dataset for the reconstructed 3D wireframes. ACC-J
and ACC-L are the evaluation for junctions and line segments.

NEAT (Final) NEAT (w/o Non-Linear Optimization) NEAT (w/o SDF-based Refinement)
Scan ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions ACC-J ↓ ACC-L ↓ #Lines #Junctions

Avg. 0.772 0.800 624.2 503.5 1.145 0.872 907.7 589.7 1.275 1.044 729.1 514.3
16 0.826 0.788 729 554 0.834 0.829 852 566 1.190 1.045 751 570
17 0.775 0.670 738 546 0.982 0.765 991 651 1.047 0.836 753 557
18 0.643 0.687 701 596 0.930 0.759 993 689 1.040 0.927 821 609
19 0.699 0.692 809 510 0.956 0.703 994 656 1.051 0.863 714 518
21 0.904 0.692 809 571 0.960 0.725 981 654 1.119 0.848 816 581
22 0.634 0.691 758 596 0.896 0.748 939 684 0.976 0.897 769 603
23 0.588 0.619 771 597 0.840 0.703 933 670 0.926 0.821 774 602
24 0.639 0.594 860 549 0.818 0.620 1008 618 0.872 0.748 866 556
37 1.482 1.086 420 405 1.804 1.477 636 565 2.014 1.860 440 425
40 0.630 1.035 137 469 1.342 0.808 1672 591 1.382 0.983 1241 475
65 0.721 1.035 137 171 1.582 1.178 191 221 1.631 1.340 147 185

105 0.720 1.013 621 478 1.793 1.143 702 511 2.053 1.360 657 490

Figure 12. Two different views of the reconstruction of 3D
wireframe on the toy scene of ABC dataset before the final
distillation step.

timized/learned NEAT field. Here, we mathematically
define the alignment cost between the junction-driven 3D
line segments l0u,v = (Ju, Jv) and its i-th NEAT-field
observation liu,v = (xi

u,x
i
v) by the angular cost and the

perpendicular cost as follow

dang(l
0
u,v, l

i
u,v) = 1− |⟨ Ju − Jv

∥Ju − Jv∥
,

xi
u − xi

v

∥xi
u − xi

v∥
⟩|,

dperp(l
0
u,v, l

i
u,v) =

∥∥Ju − proj(liu,v; Ju)
∥∥

+
∥∥Jv − proj(liu,v; Jv)

∥∥ ,
(11)

where ⟨·, ·⟩ is the inner product between two 3D vectors,
and the function proj(liu,v; Jv) projects the point Jv onto
the infinite 3D line passing through the line segment liu,v .
In Tab. 5, we report the performance changes by disabling
the non-linear optimization on the DTU dataset, which will
result in inferior 3D wireframes with larger ACC errors for
both junctions and line segments.

C.2. SDF-based 3D Junction Refinement

Following the non-linear optimization, we employ an SDF-
based refinement scheme to further enhance the localization
accuracy of junctions. Specifically, for an initial 3D

Table 6. The performance change w.r.t. the visibility threshold on
the DTU dataset.

Vis Metric 16 17 18 19 21 22 23 24 37 40 65 105 Avg.

1

ACC.↓ 0.788 0.670 0.687 0.692 0.692 0.691 0.619 0.594 1.086 1.035 1.035 1.013 0.800

COMP.↓ 5.414 5.050 5.380 4.653 4.653 5.087 5.599 5.910 7.536 8.783 8.783 6.430 6.106

Avg. Len. 22.3 23.6 26.7 27.4 27.4 22.8 26.9 27.0 27.9 23.2 23.2 27.5 25.5

#Lines 729.0 738.0 701.0 809.0 809.0 758.0 771.0 860.0 420.0 137.0 137.0 621.0 624.2

2

ACC.↓ 0.770 0.669 0.650 0.642 0.686 0.678 0.604 0.585 1.251 0.755 1.005 1.011 0.776

COMP.↓ 5.493 5.067 5.043 5.562 4.742 5.208 5.670 6.032 7.517 7.027 9.131 6.643 6.095

Avg. Len. 22.3 23.6 24.4 27.0 27.6 22.8 26.9 27.1 27.4 49.8 22.8 27.0 27.4

#Lines 711.0 729.0 789.0 667.0 784.0 737.0 756.0 840.0 391.0 1140.0 124.0 572.0 686.7

3

ACC.↓ 0.729 0.642 0.640 0.629 0.652 0.639 0.590 0.575 1.188 0.748 0.909 0.981 0.743

COMP.↓ 5.551 5.095 5.117 5.742 4.843 5.357 5.720 6.113 7.473 7.182 9.076 6.785 6.171

Avg. Len. 22.5 23.7 24.5 27.2 27.8 22.7 26.9 27.2 27.7 49.9 22.8 26.9 27.5

#Lines 689.0 708.0 765.0 642.0 751.0 708.0 748.0 826.0 371.0 1091.0 112.0 544.0 662.9

4

ACC.↓ 0.704 0.619 0.623 0.617 0.607 0.632 0.583 0.556 1.118 0.735 0.891 0.945 0.719

COMP.↓ 5.572 5.256 5.222 5.838 5.021 5.458 5.825 6.168 7.612 7.164 9.220 7.004 6.280

Avg. Len. 22.5 23.8 24.8 27.5 28.0 22.9 27.0 27.3 27.7 50.5 22.8 26.3 27.6

#Lines 672.0 679.0 737.0 617.0 723.0 683.0 721.0 806.0 347.0 1052.0 97.0 501.0 636.3

junction Ji ∈ R3 and an optimized SDF dΩ(·), we refine
the location of Ji using the following equation:

J refined
i = Ji − dΩ(Ji) · ∇dΩ(Ji), (12)

where ∇dΩ represents the normal direction of the surface at
the point Ji.

To assess the impact of this SDF-based refinement on
junctions, we conducted an ablation study comparing 3D
wireframe models with and without the SDF refinement.
The results, presented in Tab. 5, clearly demonstrate the
necessity of this refinement step for achieving significantly
improved results.

C.3. Visibility Checking

As detailed in Sec. 3.3 of the main paper, we evaluate
the reconstructed 3D line segments by projecting them
onto 2D images from each view. This process involves
computing both the angular and perpendicular distances
between the projected 3D line segments and the detected
2D line segments. A 3D line segment is considered to be
supported by a 2D detection if it aligns within an angular
distance of 10 degrees and a perpendicular distance of
5 pixels, with a minimum overlap ratio of 50%. This
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Figure 13. Qualitative Comparisons on ABC objects.

methodology allows us to determine the visibility of each
3D line segment and to filter out those that are invisible as
false alarms.

In our standard approach, the visibility threshold for each
line segment is set to 1, aiming to achieve a more complete
reconstruction. Moreover, we explore the impact of varying
this visibility threshold from 1 to 4 on the DTU dataset. The
findings, as summarized in Tab. 6, indicate that increasing
the visibility threshold results in an improvement in the
ACC metric, while the COMP metric increases.

D. Experiments on the ABC Dataset
Because the 3D wireframe annotations are very difficult to
obtain for real scene images, to better discuss the problem
of 3D wireframe reconstruction and analyze our proposed
NEAT approach, we conduct experiments on objects from
ABC Datasets as it provides 3D wireframe annotations.

Data Preparation. We use Blender [4] to render 4 objects
from the ABC dataset. The object IDs are mentioned in
Tab. 7. For each object, we first resize it into a unit cube
by dividing the size of the longest side and then moving
it to the origin center. Then, we randomly generate 100
camera locations, each of which is distant from the origin by√
1.52 + 1.52 ≈ 2.1213 units. The setting of the distance,√
1.52 + 1.52, is from our early-stage development for the

rendering, in which we set a camera at (0, 1.5, 1.5) location.
By setting the cameras to look at the origin (0, 0, 0), we
obtain 100 camera poses. Considering the fact that the
ABC dataset is relatively simple, we set the focal length

to 60.00mm to ensure the object is slightly occluded for
rendering images. The sensor width and height of the
camera in Blender are all set to 32mm. The ground truth
annotations of the 3D wireframe are from the corresponding
STEP files. For the simplicity of evaluation, we only
keep the straight-line structures and ignore the curvature
structures to obtain the ground truth annotations. The
rendered images are with the size of 512× 512.

Baseline Configuration. Fig. 13 illustrates the rendered
input images for the used four objects. Because the
rendered images are textureless and with planar objects,
the dependency of those baselines on the correspondence-
based sparse reconstruction by SfM systems [29] is hardly
satisfied to produce reliable line segment matches for 3D
line reconstruction. Accordingly, we set up an ideal base-
line instead of using Line3D++ [12] and LiMAP [17] for
comparison. Specifically, we first detect the 2D wireframes
for the rendered input images and then project the junctions
and line segments of the ground-truth 3D wireframe models
onto the 2D image plane. For the 2D junctions, if a
projected ground-truth junction can be supported by a
detected one within 5 pixels in any view, we keep the
ground-truth junction as the reconstructed one in the ideal
case. For the 2D line segments, we compute the minimal
value for the distance of the two endpoints of a detected
line segment to check if it can support a ground-truth 3D
line. The threshold is also set to 5 pixels. Then, we count
the number of reconstructed 3D line segments and junctions
in such an ideal case.

Evaluation Metrics. For our method, we compute the
precision and recall for the reconstructed 3D junctions
and line segments under the given thresholds. Because
the objects (and the ground-truth wireframes) are normal-
ized in a unit cube, we set the matching thresholds to
{0.01, 0.02, 0.05} for evaluation. For the matching distance
of line segments, we use the maximal value of the matching
distance between two endpoints to identify if a line segment
is successfully reconstructed under the specific distance
threshold. For the ideal baseline, we report the number
of ground-truth primitives (junctions or line segments), the
number of reconstructed primitives, and the reconstruction
rate.

Results and Discussion. Tab. 7 quantitatively summa-
rizes the evaluation results and the statistics on the used
scenes. As it is reported, our NEAT approach could
accurately reconstruct the wireframes from posed multiview
images. The main performance bottleneck of our method
comes from the 2D detection results. As shown in the ideal
baseline, by projecting the 3D junctions and line segments
into the image planes to obtain the ideal 2D detection



Evaluation Results Ideal Baseline
ID P0.01 P0.02 P0.05 R0.01 R0.02 R0.05 #GT # Reconstructed Recon. Rate

4981 J 0.706 0.765 0.882 0.750 0.812 0.938 32 28 0.875
L 0.758 0.758 0.758 0.521 0.521 0.521 48 41 0.854

13166 J 0.889 0.889 0.889 1.000 1.000 1.000 16 16 1.000
L 1.000 1.000 1.000 1.000 1.000 1.000 24 24 1.000

17078 J 0.400 0.629 0.686 0.583 0.917 1.000 24 23 0.958
L 0.408 0.653 0.714 0.556 0.889 0.972 36 32 0.889

19674 J 0.969 1.000 1.000 0.969 1.000 1.000 32 32 1.000
L 0.969 1.000 1.000 0.969 1.000 1.000 48 40 0.833

Table 7. Evaluation Results and some Statistics on ABC objects.
In each object, we evaluate the precision and recall rates for
junctions (J) and line segments (L). For the ideal baseline, we
count the number of ground-truth primitives, the number of
reconstructed 3D primitives, and the reconstruction rate in the
ideal baseline.

results, the 2D detection results by HAWPv3 [46] did not
perfectly hit all ground-truth annotations. Furthermore,
suppose we use the hit (localization error is less than 5
pixels) ground truth for 3D wireframe reconstruction, there
is a chance to miss some 3D junctions and more 3D line
segments. In this sense, given a relaxed threshold of the
reconstruction error for precision and recall computation,
our NEAT approach is comparable with the performance of
the ideal solution. For the first object (ID 4981), because
of the severe self-occlusion, some line segments are not
successfully reconstructed for both the ideal baseline and
our approach. For object 17078, our NEAT approach
reconstructed some parts of the two circles that are excluded
from the ground truth, which leads to a relatively low
precision rate. Fig. 13 also supported our results.

E. 3D Gaussians with NEAT Junctions

In this section, we extend the application of our NEAT
framework to 3D Gaussian Splatting, as proposed by Kerbl
et al. [13], by substituting the initial point cloud derived
from Structure-from-Motion (SfM) with the junctions iden-
tified by NEAT. This experiment is designed to showcase
the efficacy of NEAT junctions as a compact initialization
method for 3D Gaussian Splatting. Using only a few hun-
dred points, our NEAT junctions demonstrate an enhanced
fitting ability on the DTU dataset, as evidenced by improved
metrics in both Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM).

The experimental results on 12 scenes from the DTU
dataset are detailed in Tab. 8. It is observed that by
initializing the 3D Gaussians with NEAT junctions, there
is a notable improvement in performance: PSNR increases
by 0.38 dB and SSIM improves by 0.0003 points. This
finding underscores the effectiveness of NEAT junctions in
providing a more precise and compact starting point for 3D
Gaussian Splatting.

Table 8. Quantitative comparison between the NEAT junctions
and SfM points for the initialization of 3D Gaussian Splatting on
the DTU dataset.

Scene ID
NEAT Junctions SfM Points (by COLMAP [29])

PSNR ↑ SSIM ↑ #Points
(init)

#Points
(7k)

#Points
(30k) PSNR ↑ SSIM ↑ #Points

(init)
#Points

(7k)
#Points
(30k)

DTU-16 28.7 (+0.7) 0.889 (+0.006) 554 603k 1,496k 28.0 0.883 22k 558k 1,048k
DTU-17 29.2 (+0.5) 0.898 (+0.005) 546 903k 2,279k 28.7 0.893 24k 893k 1,305k
DTU-18 29.3 (+0.4) 0.901 (+0.004) 596 629k 1,234k 28.9 0.897 18k 581k 1,078k
DTU-19 29.6 (+0.4) 0.893 (-0.001) 510 475k 1,140k 29.2 0.894 19k 561k 756k
DTU-21 28.7 (+0.2) 0.898 (+0.004) 571 725k 1,657k 28.5 0.894 19k 698k 1,528k
DTU-22 29.1 (+0.2) 0.892 (+0.005) 596 641k 1,455k 28.9 0.887 21k 615k 1,113k
DTU-23 28.4 (+0.4) 0.886 (+0.006) 597 974k 2,243k 28.0 0.880 25k 850k 1,667k
DTU-24 31.1 (+0.9) 0.909 (+0.008) 549 587k 1,181k 30.2 0.901 13k 528k 852k
DTU-37 28.2 (+0.5) 0.875 (+0.000) 405 420k 1,180k 27.7 0.875 27k 409k 713k
DTU-40 30.6 (+0.2) 0.862 (+0.002) 422 520k 1,403k 30.4 0.860 32k 515k 1,070k
DTU-65 32.4 (+0.2) 0.855 (-0.001) 171 139k 294k 32.2 0.856 11k 150k 208k
DTU-105 30.8 (-0.1) 0.852 (-0.001) 478 165k 238k 30.9 0.853 23k 169k 216k

Avg. 29.68 (+0.38) 0.884 (+0.003) 499.58 565k 1,317k 29.30 0.881 21k 544k 963k

F. Miscellaneous
F.1. Evaluation Metrics

The Definition of ACC and COMP Metrics. We follow
the official evaluation protocol of the DTU dataset [1] to
compute the reconstruction accuracy (ACC) and complete-
ness (COMP), which is defined to

ACC = mean
p∈P

(
min

p∗∈P∗
∥p− p∗∥

)
, (13)

and

COMP = mean
p∗∈P∗

(
min
p∈P

∥p− p∗∥
)
, (14)

where P and P ∗ are the point clouds sampled from the
predictions and the ground truth mesh.

F.2. Information of Used BlendedMVS Scenes

The scene IDs and their MD5 code of the BlendedMVS
scenes are:

• Scene-01: 5c34300a73a8df509add216d

• Scene-02: 5b6e716d67b396324c2d77cb

• Scene-03: 5b6eff8b67b396324c5b2672

• Scene-04: 5af28cea59bc705737003253
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