
0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 1

A Functional Representation
for Graph Matching

Fu-Dong Wang, Nan Xue, Student Member, IEEE, Yipeng Zhang,
Gui-Song Xia, Senior Member, IEEE, and Marcello Pelillo, Fellow, IEEE

Abstract—Graph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node
correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic
assignment problem (QAP), which is NP-complete and results in intrinsic computational difficulties. This paper presents a functional
representation for graph matching (FRGM) that aims to provide more geometric insights on the problem and reduce the space and
time complexities. To achieve these goals, we represent each graph by a linear function space equipped with a functional such as inner
product or metric, that has an explicit geometric meaning. Consequently, the correspondence matrix between graphs can be represented
as a linear representation map. Furthermore, this map can be reformulated as a new parameterization for matching graphs in Euclidean
space such that it is consistent with graphs under rigid or nonrigid deformations. This allows us to estimate the correspondence matrix
and geometric deformations simultaneously. We use the representation of edge-attributes rather than the affinity matrix to reduce the
space complexity and propose an efficient optimization strategy to reduce the time complexity. The experimental results on both synthetic
and real-world datasets show that the FRGM can achieve state-of-the-art performance.

Index Terms—Graph matching, functional representation, Frank-Wolfe method, geometric deformation.

F

1 INTRODUCTION

Graph matching (GM) is widely used to find node-to-node
correspondence [1], [2] between graph-structured data in many
computer vision and pattern recognition tasks, such as shape
matching and retrieval [3], [4], object categorization [5], person
re-identification [6], [7], action recognition [8], and structure from
motion [9], to name a few. In these applications, real-world data
are generally represented as abstract graphs equipped with node
attributes (e.g., SIFT descriptor [10], shape context [3]) and edge
attributes (e.g., relationships between nodes). In this way, many
GM methods have been proposed based on the assumption that
nodes or edges with more similar attributes are more likely to
be matched. Generally, GM methods construct objective functions
w.r.t. the varying correspondence to measure similarities (or dis-
similarities) between nodes and edges. Then, they maximize (or
minimize) the objective functions to pursue an optimal correspon-
dence that achieves maximal (or minimal) total similarities (or
dissimilarities) between two graphs. In the literature, an objective
function is generally composed of unary [3], pairwise [11], [12] or
higher-order [13], [14] potentials. In practice, matching graphs us-
ing only unary potential (node attributes) might lead to undesirable
results due to the insufficient discriminability of node attributes.
Therefore, pairwise or higher-order potentials are often integrated
to better preserve the structural alignments between graphs.

Although the past decades have witnessed remarkable pro-
gresses in GM [1], there are still many challenges with respect to
both computational difficulty and formulation expression. Specif-
ically, as widely used, GM that incorporates pairwise constraints

F.-D. Wang, G.-S. Xia, N. Xue are with LIESMARS, Wuhan University, Wuhan,
430079, China. E-mail: {fudong-wang, guisong.xia, xuenan}@whu.edu.cn.
Y. Zhang is with the Department of Computer Science, Wuhan University,
Wuhan, 430072, China. E-mail: zyp91@whu.edu.cn.
M. Pelillo is with Computer Vision Lab., Ca’ Foscari University of Venice,
30172 Venezia Mestre, Italy. Email: pelillo@unive.it.
Corresponding author: Gui-Song Xia (guisong.xia@whu.edu.cn).

can be formulated as a quadratic assignment problem (QAP) [15],
among which Lawler’s QAP [16] and Koopmans-Beckmann’s
QAP [17] are two common formulations. However, due to the
NP-complete [18] nature of QAP, only approximate solutions are
available in polynomial time. In practice, solving GM problems
with pairwise constraints often encounters intrinsic difficulties
due to the high computational complexity in space or time.
For GM methods that apply Lawler’s QAP, the affinity matrix
results in high space complexity O(m2n2) w.r.t. the numbers of
nodes in two graphs (m,n). For GM methods that aim to solve
the objective functions with discrete binary solutions through a
gradually convex-concave continuous optimization strategy, the
verbose iterations result in high time complexity. Restricted by
these limitations, only graphs with dozens of nodes can be handled
by these methods in practice.

In addition to the computational difficulties, how to formulate
the GM model for real applications is also important. Representing
real-world data in the conventional graph model can provide some
generalities for the general GM methods mentioned above. How-
ever, their formulations can neither reflect the geometric nature of
real-world data nor handle graphs with geometric deformations
(rigid or nonrigid). For example, when the edge attributes of
graphs are computed as distances [19], [20], [21] on some explicit
or implicit spaces that contain the real-world data, the formulations
of the original GM methods that define objective functions in the
form of Lawler’s or Koompmans-Beckmann’s QAP ignore the
geometric properties behind these data. They can only achieve
generality and ignore the geometric nature of real-world data. For
graphs with rigid or nonrigid geometric deformations [19], the
original GM methods cannot compatibly handle the two tasks
that estimate both correspondence and deformation parameters
because they can hardly provide the correspondence a geometric
interpretation that is naturally contained in the deformation.

Facing these issues, this paper introduces a new functional

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 2

nonlinear/complicate

push-forward operation:

0 1.1 2.1

1.1 0 2.0 1.9

2.1 2.0 0 1.3

1.9 1.3 0

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4 5

2.0 1.6 1.2 0.2 0.8

1.5 1.9 0.1 1.0 0.7

1.0 0.2 1.8 1.5 0.9

0.2 1.1 1.4 2.1 0.7

0 1.2 1.8 1.2

1.2 0 2.0 2.1

1.8 2.0 0 1.0 1.1

2.1 1.0 0

1.2 1.1 0

1 2 3 4 5

1

2

3

4

5

Fig. 1. FRGM: given two graphs G1 and G2, we construct two function
spaces F(V1,R) and F(V2,R) as representations, where Φ and Ψ
are two sets of basis functions that represent the nodes V1 and V2,
and FV1 and FV2 are the inner product or metric that represent the
edge attributes E1 and E2. The matching between two graphs can be
viewed as a transformation T : G1 → G2, which may be nonlinear and
complicated. Fortunately, T can be recovered from a linear functional:
TF : F(V1,R) → F(V2,R), which is induced from T by the push-
forward operation and represented by a linear functional representation
map P ∈ Rm×n. P is exactly a correspondence between graphs. Based
on the inner product or metric defined as FV2 , each transformed node
will lie closer to its correct match, as shown in matrix D. This property
is helpful for improving the matching performance.

representation for graph matching (FRGM). The main idea is
to represent the graphs and the node-to-node correspondence in
linear functional representations for both general and Euclidean
GM models. Specifically, for general GM, as shown in Fig. 1,
given two undirected graphs, we can identically represent the node
sets as linear function spaces, on which some specified functionals
FV (e.g., inner product or metric) can be compatibly constructed
to represent the edge attributes. Then, between the two function
spaces, a functional TF induced by the push-forward operation is
represented by a linear representation map P, which is exactly the
correspondence between graphs. With these concepts, our general
GM algorithm is proposed by minimizing the objective function
w.r.t. P that measures the difference of graph attributes between
graph G1 and its transformed graph T (G1). Namely, we want
an optimal functional TF in the sense of preserving the inner
product or metric. For the Euclidean GM in which the graphs are
embedded in Euclidean space Rd, the functional TF that plays the
role of correspondence between graphs can be directly deduced on
the background space Rd. Due to the natural linearity of Rd, TF
can also be represented by a linear representation map P, which
is not only a parameterization for GM but also associative with
geometric parameters for graphs under geometric deformations. A
preliminary version of this work was presented in [22].

FRGM only needs to compute and store the edge attributes
of graphs; thus its space complexity is O(n2) (with m ≤ n).

To reduce the time complexity, we first propose an optimization
algorithm with time complexity O(n3) based on the Frank-Wolfe
method. Then, by taking advantage of the specified property of the
relaxed feasible field, we improve the Frank-Wolfe method by an
approximation that has a lower time complexity of O(mn).

The contributions of this paper can be distinguished in the
following aspects:

- We introduce a new functional representation perspective
that can bridge the gap between the formulation of general
GM and the geometric nature behind the real-world data.
This guides us in constructing more efficient objective
functions and algorithms for general GM problem.

- For graphs embedded in Euclidean space, we extend the
linear functional representation map as a new geometric
parameterization that achieves compatibility with the geo-
metric parameters of graphs. This helps to globally handle
graphs with or without geometric deformations.

- We propose GM algorithms with low space complexity
and time complexity by avoiding the use of an affinity
matrix and by improving the optimization strategy. The
proposed algorithms outperform the state-of-the-art meth-
ods in terms of both efficiency and accuracy.

The remainder of this paper is organized as follows. Sec. 2
presents the mathematical formulation and related work of GM. In
Sec. 3, we demonstrate the functional representation for GM with
general settings (FRGM-G) and the resulting algorithm. In Sec. 4–
Sec. 5, we extend FRGM for matching graphs in Euclidean space
(FRGM-E) with and without geometric deformations (FRGM-
D), respectively. In Sec. 6, we present a numerical analysis of
optimization strategy. Finally, we report the experimental results
and analysis in Sec. 7 and conclude this paper in Sec. 8.

2 BACKGROUND AND RELATED WORK

This section first introduces the preliminaries and basic notations
of GM and then it discusses some related works on GM. Tab. 1
summarizes some frequently used notations through this paper.

TABLE 1
Frequently used notations in our paper.

m,n size of graph
k = 1, 2 index of graphs

Gk = {Vk, Ek} graph Gk with nodes Vk and edges Ek
v
(k)
i ∈ Rdv node attributes vector of Gk

Ek ∈ Rm×m(or Rn×n) edge attributes matrix of Gk
K ∈ Rmn×mn affinity matrix

U ∈ Rm×n node dissimilarity
P (or P̂) discrete (or relaxed) feasible field

P ∈ P (or P̂) correspondence matrix
F(Vk,R) function space on Gk

Φ = {φi}mi=1 basis functions of F(V1,R)
Ψ = {ψj}nj=1 basis functions of F(V2,R)

FVk (·, ·) functional on F(Vk,R)×F(Vk,R)
T mapping from G1 to G2
TF functional from F(V1,R) to F(V2,R)

2.1 Definition of GM Problem

An undirected graph G = {V, E} of sizem is defined by a discrete
set of nodes V = {Vi}mi=1 and a set of undirected edges E ⊆
V × V such that (Vi1 , Vi2) = (Vi2 , Vi1). Generally, the edge of

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 3

graph G is written as a symmetric edge indicator matrix (also
denoted as) E ∈ Rm×m, where Ei1i2 = 1 if there is an edge
between Vi1 and Vi2 , and Ei1i2 = 0 otherwise. An important
generalization is the weighted graph defined by the association
of non-negative real values Ei1i2 to graph edges, and E is called
adjacency weight matrix. We assume graphs with no self-loop in
this paper, i.e., Eii = 0.

In many real applications, graph G is associated with node
and edge attributes expressed as scalars or vectors. For an at-
tribute graph G, we denote vi ∈ Rdv as the node attribute of
Vi and ei1i2 ∈ Rde as the edge attribute of Ei1i2 . Typically,
an edge attribute matrix E ∈ Rm×m will be calculated by
some user-specified functions such as Ei1i2 = φ(vi1 ,vi2) or
Ei1i2 = φ(ei1i2).

Given two graphs G1 = {V1, E1},G2 = {V2, E2} of size m
and n (m ≤ n) respectively, the GM problem is to find an optimal
node-to-node correspondence P ∈ {0, 1}m×n , where Pij = 1

when the nodes V (1)
i ∈ V1 and V

(2)
j ∈ V2 are matched and

Pij = 0 otherwise. It is clear that any possible correspondence P
equals a (partial) permutation matrix when GM imposes the one-
to-(at most)-one constraints. Therefore, the feasible field of P can
be defined as:

P ,
{
P ∈ {0, 1}m×n ;P1n = 1m,P

T1m ≤ 1n
}
, (1)

where 1m is a unit vector. When m = n, P ∈ P is orthogonal:
PPT = Im, where Im is a unit matrix.

To find the optimal correspondence, GM methods that in-
corporate pairwise constraints generally minimize or maximize
their objective functions w.r.t. P upon the feasible field P . There
are two main typical objective functions: Lawler’s QAP [16] and
Koopmans-Beckmann’s QAP [17].

The main idea behind Lawler’s QAP [11], [12], [16], [19], [23]
is to maximize the sum of the node and edge similarities:

max
P∈P

PT
v KPv =

∑
ij

PijKij;ij +
∑

(i1,i2)
(j1,j2)

Piij1Ki1j1;i2j2Pi2j2 , (2)

where Pv is the columnwise vectorized replica of P. The diagonal
element Kij;ij measures the node affinity calculated with node
attributes as Φv(v

(1)
i ,v

(2)
j), and Ki1j1;i2j2 measures the edge

affinity calculated with edge attributes as Φe(e
(1)
i1i2

, e
(2)
j1,j2

). K ∈
Rmn×mn is called the affinity matrix of G1 and G2.

Koopmans-Beckmann’s QAP [17], [24] formulates GM as

max
P∈P
−tr(UTP) + λtr(E1PE2PT), (3)

where {Uij} ∈ Rm×n measures the dissimilarity between node
V

(1)
i and V (2)

j , and E1, E2 are the adjacency weight matrices of G1
and G2. λ ≥ 0 is a weight between the unary and pairwise terms.
This formulation differs from Eqn. (2) mainly in the pairwise term
which measures the edge compatibility as the linear similarity of
adjacency matrices E1 and E2. In fact, Eqn. (3) can be regarded
as a special case of Lawler’s QAP (Eqn. (2)) if K = E1 ⊗ E2,
where ⊗ denotes the Kronecker product. With this formulation,
the space complexity of GM is O(n2) and much lower than that
O(m2n2) of Eqn. (2).

The Eqn. (3) has another approximation, which aims to mini-
mize the node and edge dissimilarity between two graphs:

min
P∈P
〈P,U〉F +

λ

2
||E1 −PE2PT ||2F , (4)

where 〈·, ·〉F is the Frobenius dot-product defined as 〈A,B〉F =∑
ij AijBij and || · ||2F is the Frobenius matrix norm defined

as ||A||2F = 〈A,A〉F . The conversion from Eqn. (4) to Eqn. (3)
holds equally under the fact that ∀P ∈ P is an orthogonal matrix.

Due to the NP-complete nature of the above formulations, GM
methods generally approximate the discrete feasible field P by a
continuous relaxation P̂ : Pij ∈ [0, 1], which is known as the
doubly stochastic relaxation. Then the objective functions can be
approximately solved by applying constrained optimization meth-
ods and employing a post-discretization step such the Hungarian
algorithm [25] to obtain a discrete binary solution.

2.2 Related Work

Over the past decades, the GM problem of finding node-to-node
correspondence between graphs has been extensively studied [1],
[2]. Earlier works (exact GM) [26], [27] tended to regard GM as
(sub)graph isomorphism. However, this assumption is too strict
and leads to less flexibility for real applications. Therefore, later
works on GM (inexact/error-tolerant GM) [12], [19], [21], [23]
focused more on finding inexact matching between weighted
graphs via optimizing more flexible objective functions.

Among the inexact GM methods, some of them aim to reduce
the considerable space complexity caused by the affinity matrix
K in Eqn. (2). A typical work is the factorized graph matching
(FGM) [19], which factorized K as a Kronecker product of several
smaller matrices. An efficient sampling heuristic was proposed
in [28] to avoid storing the whole K at once. Some works [24],
[29] constructed objective functions similar to Eqn. (4) or Eqn. (3)
to avoid using matrix K. Our work use the representation of edge
attributes rather than K.

Since exactly solving the objective functions upon discrete
feasible field P is NP-complete, most GM methods relax P for
approximation purpose in several ways. The first typical relax-
ation is spectral relaxation, as proposed in [11], [30], by forcing
||P||2 = 1; then, the solution is computed as the leading eigenvec-
tor of K. The second relaxation [24] is to consider P as a subset of
an orthogonal matrices set such that PPT = Im, which is the ba-
sis of converting Eqn. (4) into Eqn. (3). Semidefinite-programming
(SDP) was also applied to approximately solve the GM problem
in [31], [32] by introducing a new variable X = PvP

T
v under

the convex semidefinite constraint X − PvP
T
v � 0. Then, P is

approximately recovered by X.
The most widely used relaxation approach is the doubly

stochastic relaxation P̂ , which is the convex hull of P . Since P̂ is
a convex set defined in a linear form, it allows the GM objectives
functions to be solved by more flexible convex or nonconvex
optimization algorithms. To find more global optimal solutions
with a binary property, the algorithms proposed in [19], [24],
[33], [34] constructed objective functions in both convex and con-
cave relaxations controlled by a continuation parameter, and then
they developed a path-following-based strategy for optimization.
These approaches are generally time consuming, particularly for
matching graphs with more than dozens of nodes. The graduated
assignment method [35] iteratively solved a series of first-order
approximations of the objective function. Its improvement [36]
provided more convergence analysis. The decomposition-based
work in [37] developed its optimization technique by referring
to dual decomposition. Additionally, another method in [21] de-
composed the matching constraints and then used an optimization
strategy based on the alternating direction method of multipliers.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 4

To ensure binary solutions, some methods such as the integer-
projected fixed point algorithm [23] and discrete tabu search [38],
have been proposed to search in the discrete feasible domain.
Although our method also adopt the doubly stochastic relaxation,
we can solve our objective functions with nearly binary solutions,
which helps to reduce the effect of the post-discretization step.

In addition to approximating the objective functions, some
works also intended to provide more interpretations of the GM
problem. The probability-based works [28], [39] solved the GM
problem from a maximum likelihood estimation perspective. Some
learning-based works [40], [41] went further to explore how to
improve the affinity matrix K by considering rotations and scales
of real data. A pioneering work [42] presented an end-to-end
deep learning framework for GM. A random walk view [12] was
introduced by simulating random walks with reweighting jumps.
Some works [19], [43] addressed matching graphs with geometric
deformations. A max-pooling-based strategy was proposed in [44]
to address the presence of outliers. Compared to these works, our
proposed FRGM provides more geometric insights for GM with
general settings by using a functional representation to interpret
the geometric nature of real-world data, and it then matches graphs
embedded in Euclidean space by providing a new parameterization
view to handle graphs under geometric deformations.

3 FUNCTIONAL REPRESENTATION FOR GM
This section presents the functional representation for general GM
(FRGM-G) that incorporates pairwise constraints. In Sec. 3.1, we
introduce the function space of a graph, on which functionals can
be defined as the inner product or metric to compatibly represent
the edge attributes. In Sec. 3.2, we discuss how to represent the
correspondence between graphs as a linear functional representa-
tion map between function spaces. Finally, the correspondence is
an optimal functional map obtained by the algorithm in Sec. 3.3.

3.1 Function Space on Graph
Given an undirected graph G = {V, E} with edge attribute matrix
E ∈ Rm×m, we aim to establish function space F(V,R) of G, on
which some geometric structures, such as inner product or metric
can be defined. This is especially meaningful when graphs are
embedded in explicit or hidden manifolds.

Let F(V,R) denote the function space of all real-valued
functions on V = {Vi}mi=1. Since V is finite discrete, we can
choose a finite set of basis functions Φ = {φi}mi=1 to explicitly
construct F(V,R).

Definition 3.1. The function space F(V,R) on graph G can be
defined as:

F(V,R) ,

{
φa =

∑
i

aiφi, a , (a1, ..., am)T ∈ Rm
}
. (5)

For example, φi can be chosen as the indicator of Vi:

φi : V → R, φi(Vj) =

{
1, j = i.
0, j 6= i.

(6)

Considering the fact that the correspondence matrix P ∈ P̂ is
positive, i.e., Pij ∈ [0, 1], a typical subset of F(V,R) can be
defined as follows, which is the convex hull of {φi}mi=1:

C(V,R) ,

{
φa =

∑
i

aiφi;
∑
i

ai = 1,a ∈ Rm+

}
. (7)

Once the function space F(V,R) is built, some trivial opera-
tions can be defined, e.g., inner product 〈φa, φb〉 =

∑
i aibi and

metric d(φa, φb) = (
∑
i(ai − bi)2)1/2. However, these defini-

tions cannot express the edge attribute Ei1i2 . Therefore, we aim
to define some other operations to represent E ∈ Rm×m based
on F(V,R). An available approach is to define functionals on
the product space F(V,R)×F(V,R). Moreover, the functionals
should (1) be compatible with E and (2) have geometric structures
such as inner product or metric, as demonstrated in the following:

Definition 3.2. A functional FV : F(V,R) × F(V,R) → R is
compatible with E if it satisfies FV(φi1 , φi2) = Ei1i2 .

Among all the compatible functionals, there are some specified
ones that can be defined as the inner product or metric on the
function space F(V,R) or its subset C(V,R), as follows.

Definition 3.3. The inner product on the function space F(V,R)
can be defined in an explicit form: ∀φa, φb ∈ F(V,R),

FV(φa, φb) ,
∑
i1,i2

ai1bi2FV(φi1 , φi2) =
∑
i1,i2

ai1bi2Ei1i2 . (8)

For the given edge attribute matrix E that is symmetric,
FV(·, ·) satisfies the first two inner product axioms: symmetry and
linearity. To satisfy the third axiom, positive-definiteness, we need
more knowledge about E, e.g., E is positive-definite. However, if
the positive-definiteness is too strong, we can relax it to a weaker
condition.

Proposition 1. Assume that E satisfies Ei1i2 = 0 iff i1 = i2.
Then, the functional FV(·, ·) in Eqn. (8) satisfies all three axioms
on F(V,R) by replacing E with exp(−E2/σ2) with σ > 0 small
enough. Here, E2 is a pointwise product.

This proposition holds because when σ > 0 is sufficiently
small, all the eigenvalues of matrix exp(−E2/σ2) will be positive.
In particular, when E is computed as a metric (distance) matrix
on an explicit or hidden manifold, it satisfies that Eii = 0
and exp(−E2/σ2) is positive-definite. Moreover, σ can be used
to adjust the eigenspace of exp(−E2/σ2). Fig. 2 illustrates an
empirical study on thousands of E’s extracted from both realistic
and synthetic datasets used in Sec. 7. The edge attribute E of each
graph is computed in a metric form (either Euclidean distance or
geodesic distance) and then normalized to [0, 1] divided by the
maximum element. We can see that

1) All the eigenvalues of exp(−E2/σ2) are positive.
2) The ratio between the minimum and maximum eigenval-

ues has a similar tendency when σ varies from 0 to 1.
It shows that exp(−E2/σ2) will become indistinguishable if σ
is too small or unbalanced if σ is too large. We can choose a
suitable σ to adjust the eigenspace of exp(−E2/σ2) to achieve
better matching performance.

The inner product FV(·, ·) can induce a metric by definition
d(φa, φb) , FV(φa − φb, φa − φb)1/2. Moreover, we can also
define another metric on the subset C(V,R) based on E itself.

Definition 3.4. The metric on the convex hull C(V,R) can be
defined in an implicit form: ∀φa, φb ∈ C(V,R),

FV(φa, φb) = min
π∈P(a,b)

πi1i2FV(φi1 , φi2) (9)

= min
π∈P(a,b)

πi1i2Ei1i2 , (10)

where P(a,b) =
{
π ∈ Rm×m+ ;

∑
i πij = bj ,

∑
j πij = ai

}
.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 5

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(a) 3D face

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(b) Synthetic Data

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(c) House

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(d) Hotel

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(e) Cars

0 0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1

ei
g

m
in

/e
ig

m
a
x

(f) Motorbikes

1

Fig. 2. Empirical statistics of exp(−E2/σ2) extracted from the realistic
and synthetic datasets used in the experimental section. For thousands
of graphs in all six datasets, as σ varies from 0 to 1, the ratio between
the minimum and maximum eigenvalues of exp(−E2/σ2) changes with
a similar tendency.

When E is computed as a metric, FV(·, ·) satisfies all three
distance axioms on C(V,R), and it is a typical Wasserstein
distance (or Sinkhorn distance) [45]. The definition in Eqn. (10) is
not differentiable w.r.t. a,b; one can use the entropy-regularized
Wasserstein distance [45] to achieve differentiability.

With the function space equipped with inner product or metric,
each graph is assigned with explicit geometric structures that
are compatible with the edge attribute. Next, we demonstrate the
idea of using the functional map representation to formulate the
correspondence between graphs as a functional TF between two
function spaces TF : F(V1,R)→ F(V2,R).

3.2 Functional Map Representation for GM
The matching between two graphs G1 = {V1, E1} and G2 =
{V2, E2} can be viewed as a mapping T from V1 to V2, which
may be nonlinear and complicated. Therefore, we use the push-
forward operation to induce a linear functional TF rather than T
to equally represent the matching between graphs.

Due to the one-to-(at most)-one constraint of GM, we strict
that T : V1 → V2 is an injective mapping, i.e., each node in G2
is mapped to by at most one node in G1. Then, the constrained
mapping T |T (V1) : V1 → T (V1) ⊆ V2 is bijective, i.e., exactly
one-to-one correspondence. Therefore, without ambiguity, we can
assume that T is bijective and invertible between V1 and T (V1) ⊆
V2. Each T induces a natural transformation TF : F(V1,R) →
F(V2,R) via the push-forward operation, which is widely used in
functional analysis [46] and real applications [47] [48]:

Definition 3.5. The functional TF : F(V1,R) → F(V2,R)
induced from T is defined as: ∀ φ ∈ F(V1,R), the image of
φ is TF (φ) , φ ◦ T −1 ∈ F(V2,R).

Proposition 2. The original T can be recovered from TF .

For each point V (1)
i ∈ V1, it can be associated with an

indicator function φi as Eqn. (6). To recover the image T (V
(1)
i)

from TF , we utilize the function ψ = TF (φi) : V2 → R, which
satisfies ∀ V ∈ V2,

ψ(V) , φ ◦ T −1(V) =

{
1, T −1(V) = V

(1)
i ,

0, T −1(V) 6= V
(1)
i .

(11)

Since T is bijective and invertible, a unique V ∈ V2 exists s.t.
T −1(V) = V

(1)
i . Then, once we find ψ(V

(2)
j) = 1, we have

T −1(V
(2)
j) = V

(1)
i , and V (2)

j must equal the image T (V
(1)
i) of

V
(1)
i : T (V

(1)
i) = V

(2)
j . Thus, the functional TF can be used to

equally represent T .

Proposition 3. TF is a linear mapping from function spaces
F(V1,R) to F(V2,R).

It holds because ∀f1, f2 ∈ F(V1,R), α1, α2 ∈ R,

TF (α1f1 + α2f2) = (α1f1 + α2f2) ◦ T −1

= α1f1 ◦ T −1 + α2f2 ◦ T −1 = α1TF (f1) + α2TF (f2). (12)

Although T may be complicated, TF is linear and simple.
With function spacesF(V1,R) andF(V2,R) defined by basis

functions Φ = {φi}mi=1 and Ψ = {ψj}nj=1 respectively, each ba-
sis function φi can be transformed into F(V2,R) and represented
in a linear form as TF (φi) =

∑n
j=1 Pijψj . Whenever P reaches

an extreme point of the feasible field P̂ , it is a binary correspon-
dence between graphs, and consequently, φi is transformed into
(i.e., matches) a ψj′ , where Pij′ = 1,Pi,j 6=j′ = 0.

To find an optimal correspondence between two graphs with
edge attributes E1 ∈ Rm×m and E2 ∈ Rn×n, we declare that the
induced functional TF should be able to preserve the geometric
structures defined on function spaces. Namely, TF should be the
inner product or metric preserving. More precisely, for each pair
(φi1 , φi2), the functional value FV1(φi1 , φi2) should be similar to
the functional value of the transformed pair (TF (φi1), TF (φi2)),
which is calculated as

FV2(TF (φi1), TF (φi2)) = FV2(

n∑
j=1

Pi1jψj ,

n∑
j=1

Pi2jψj). (13)

The functionals defined in Definition 3.3 or Definition 3.4 can be
used to calculate it. Finally, to incorporate the pairwise constraints,
we aim to minimize the total sum as follows:∑

(i1,i2)

E1iii2
[
FV1(φi1 , φi2)− FV2

(
TF (φi1), TF (φi2)

)]2
,
∑

(i1,i2)

E1iii2
[
E1i1i2

− F(P)i1i2
]2

, ||E1 − F(P)||2F,E1 , (14)

where F(P)i1i2 , FV2
(∑n

j=1 Pi1jψj ,
∑n
j=1 Pi2jψj

)
is com-

puted based on the edge attributes matrix E2. Note that the
affinity matrix K with size O(m2n2) is replaced here by the edge
attributes matrix E1 with size O(m2) and E2 with size O(n2).

3.3 FRGM-G: matching graphs with general settings
Here, we propose our FRGM-G algorithm for matching graphs
with general settings, i.e. without knowledge on the geometrical
structures of the graphs. To find an optimal correspondence, i.e.,
functional map P mentioned above, we first minimize an objective
function as

Jori(P) = (1− α1)〈P,U〉F + α1||E1 − F(P)||2F,E1 , (15)

where α1 ∈ [0, 1] balances the weights of the unary term and
pairwise term. In general, Jori(P) is nonconvex and minimizing
Jori(P) upon the feasible field P̂ results in a local minimum. The
minimizer P∗1 may be not binary, and the post-discretization of P∗1
may reduce the matching accuracy. Therefore, we next construct
another objective function to find a better solution based on the
obtained P∗1.

According to the definition TF (φi) =
∑n
j=1 Pijψj , each

TF (φi) lies in the convex set C(V2,R), which is the convex hull
of {ψj}nj=1. Therefore, the transformed functions {TF (φi)}mi=1

lies in the same function space spanned by {ψj}nj=1, and the

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 6

offset between {TF (φi)}mi=1 and {ψj}nj=1 can be controlled.
Moreover, since P∗1 indeed preserves the pairwise geometric
structure between two graphs, TF (φi) will lie closer to the correct
matching ψδi . This means that, based on the metric defined on
the function spaces, the distance d(TF (φi), ψδi) makes sense and
will be smaller than d(TF (φi), ψj 6=δi). Therefore, we define the
second objective function as:

Jint(P) = (1− α2)〈P,D〉F + α2||F(P∗1)− F(P)||2F,E1 , (16)

where Dij = d(TF (φi), ψj) is the distance between TF (φi) and
ψ
j

computed by the metric functional defined on F(V2,R) or
C(V2,R). The minimizer P∗2 can be viewed as a displacement
interpolation: to minimize 〈P,D〉F , we obtain a solution P∗0
that is an extreme point (thus, binary) of the feasible field P̂ ;
to minimize ||F(P∗1) − F(P)||2F,E1 , we obtain a solution that
equals P∗1 ∈ P̂ . Then, P∗2 is an interpolation between P∗0 and P∗1
controlled by α2 ∈ [0, 1]. Finally, we use the Hungarian method
to discretize P∗2 into being binary.

4 FRGM IN EUCLIDEAN SPACE

In many computer vision applications, graphs are often embedded
in explicit or implicit manifoldsM, e.g., Euclidean space Rd and
surface S , where graphs with nodes V ∈ M are naturally asso-
ciated with some specific geometric properties. For example, the
node attributes can be computed as SIFT [10], shape context [3],
HKS [49], etc; the edge attribute matrix E can be computed as
Euclidean distance on Rd or geodesic distance on S .

The proposed method FRGM-G in Sec. 3 can be used to match
graphs in these cases. Furthermore, for graphs embedded in Rd,
we can extend FRGM to address Euclidean GM (FRGM-E) based
on the fact that the functional representation of TF between ab-
stract function spaces can be deduced into the concrete Euclidean
space Rd with explicit geometric interpretations. Since each node
can be represented as a vector V (2)

j ∈ Rd, the expression PijV
(2)
j

naturally makes sense. Consequently, we can directly define the
unknown transformation T : V1 → V2 in a linear form:

T : V1 → V2, (17)

V
(1)
i 7→ T (V

(1)
i) =

n∑
j=1

PijV
(2)
j . (18)

The transformed nodes can be rewritten in a matrix notation
T (V1) , PV2 and T (V

(1)
i) , (PV2)i. Now, P ∈ Rm×n is a

linear representation map of the unknown transformation T . With
the constraint that P ∈ P̂ , each node T (V

(1)
i) lies in the convex

hull of V2 ∈ Rd. Once P reaches a binary correspondence matrix,
V

(1)
i is transformed into V 2

j′ , where Pij′ = 1,Pi,j 6=j′ = 0.
For graphs embedded in Euclidean spaces, the edge attributes,

such as edge length and edge orientation, are widely used. The
edge attributes of the transformed graph T (V1) = PV2 can be
computed as a function w.r.t. P as:

- edge length computed as the Euclidean distance

||T (V
(1)
i1

)− T (V
(1)
i2

)|| = ||(PV2)i1 − (PV2)i2 ||,

- edge orientation computed as the vector between nodes
−−−−−−−−−−−−−→
T (V

(1)
i1

)− T (V
(1)
i2

) =
−−−−−−−−−−−−−→
(PV2)i1 − (PV2)i2 ,

where || · || is the Euclidean L2 norm. We propose our algorithm
for matching graphs in Euclidean space, i.e. FRGM-E, in the
following sections.

4.1 Preserving edge-length
Given two graphs with visually similar structures, a general
constraint is to preserve the edge length between the original edge
V

(1)
i1i2

, (V
(1)
i1
, V

(1)
i2

) and its corresponding edge T (V
(1)
i1i2

) ,

(T (V
(1)
i1

), T (V
(1)
i2

)) , (PV2)i1i2 . Thus, the pairwise potential
of the first objective function can be defined as follows:

Jnon(P) =
∑

(i1,i2)

E1i1i2 (||V (1)
i1i2
|| − ||T (V

(1)
i1i2

)||)2 (19)

=
∑

(i1,i2)

E1i1i2 (||V (1)
i1i2
|| − ||(PV2)i1i2 ||)2. (20)

We can add a unary term 〈P,U〉F computed with node attributes
to this pairwise term as follows:

Jnon(P) = (1− λ1)〈P,U〉F (21)

+ λ1

∑
(i1,i2)

E1i1i2 (||V (1)
i1i2
|| − ||(PV2)i1i2 ||)

2. (22)

Due to the nonconvexity of Jnon(P), its solution P∗1 ∈ P̂
often reaches a local minimum and is not binary, and the post-
discretization procedure will result in low accuracy; see Fig. 3
(b) for illustration. Consequently, the transformed node T (V

(1)
i)

is not exactly equal to a V (2)
j ∈ V2, and there is often an offset

between T (V
(1)
i) and its correct match V (2)

δi
. Fig. 3 (a) shows this

phenomenon, where each T (V
(1)
i) shifts from the correct match

V
(2)
δi

to some degree.

4.2 Reducing node offset
Benefiting from the property of the solution P∗1 that preserves
the edge length of G1, the offset vectors of adjacent transformed
nodes in {(P∗1V2)i}mi=1 have similar directions and norms, as
shown in Fig. 3 (a). To reduce the node offset from (P∗1V2)i
to the corresponding correct match V (2)

δi
denoted by

−−−−−−−−→
(P∗1V2)iV

(2)
δi

= V
(2)
δi
− (P∗1V2)i,

we aim to minimize the differences between adjacent offset vectors,

Jcon(P) =
∑

(i1,i2)

Si1i2 || ((PV2)i1 − (P∗1V2)i1) (23)

− ((PV2)i1 − (P∗1V2)i1) ||2

= Tr
(

(PV2 −P∗1V2)TLS(PV2 −P∗1V2)
)
, (24)

where LS = diag(SI)−S and S ∈ Rm×m+ is computed to indicate the
adjacency relation of node pair (T (V

(1)
i1

), T (V
(1)
i2

)). The undirected
graph here will result in a symmetric S; therefore LS is positive-
definite and Jcon(P) is convex.

Compared to the algorithm proposed for general GM in Sec. 3.3,
the distance matrix D here can be computed with an explicit ge-
ometric interpretation: Dij = ||T (V

(1)
i) − V

(2)
j || is the Euclidean

distance between the transformed node T (V
(1)
i) and V (2)

j . As shown
in Fig. 3 (c), ||T (V

(1)
i)− V (2)

δi
|| is smaller than ||T (V

(1)
i)− V (2)

j 6=δi ||,
where V (2)

δi
denotes the correct matching of V (1)

i . Therefore, the unary
term 〈P,D〉F can be added as a useful constraint during matching.
Finally, Jcon(P) is summarized as:

Jcon(P) = (1− λ2)〈P,D〉F
+ λ2Tr

(
(PV2 −P∗1V2)TLS(PV2 −P∗1V2)

)
. (25)

In general, this objective function Jcon(P) is solved by a (nearly)
binary solution P∗2 if λ2 ∈ [0, 1] is small. This significantly improves
the matching accuracy. See Fig. 3 (d) as an example.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 7

2726

10

17

 2

 3

24

12

23
25

 6

29

30

 5

28

 7

 9

20

22

16

 1

 2

 3

 4

 5

 6
 7

 8

 9 10

11

1213

1415

16
17

18
19

20

21

22

23

24
25

26 27
28

29

30
2726

10

17

 2

 3

24

12

23

25

 6

29

30

 5

28

 7

 9

20

22

16

(a)

[X,Y]: [12 8]

Index: 0.06422

[R,G,B]: [0.1922 0.2627 0.7255]

(b)

2726

10

17

 2

 3

24

12

23
25

 6

29

30

 5

28

 7

 9

20

22

16

 1

 2

 3

 4

 5

 6
 7

 8

 9 10

11

1213

1415

16
17

18
19

20

21

22

23

24
25

26 27
28

29

30
2726

10

17

 2

 3

24

12

23

25

 6

29

30

 5

28

 7

 9

20

22

16

(c)

[X,Y]: [12 8]

Index: 0.9536

[R,G,B]: [0.9569 0.9216 0.09412]

(d)

Fig. 3. (a) Nodes shift after being transformed by minimizing Jnon(P) in a 20-vs-30 case. The lines in blue are the offset vectors, and the points in
green are transformed nodes

{
T (V

(1)
i)

}m
i=1

. (b) Representation map P∗1 (top) and the post-discretization (bottom) corresponding to (a). (c) Nodes
transformed by minimizing Jcon(P) with almost no offset. (d) Representation map P∗2 (top) and the post-discretization (bottom) corresponding to
(c). In (b) and (d), red points mark the ground-truth correspondence.

Graph with 46 nodes 46 inliers with 40 outliers Iteration = 1 Iteration = 2 Iteration = 3 Iteration = 4

1

Fig. 4. Outlier removal with transformation map P∗ obtained by alternately minimizing Jnon(P) and Jcon(P). In each iteration, the red dots are
inliers, and the green plus signs are the nodes remaining after removal.

4.3 Explicit outlier-removal strategy
In practice, outliers generally occur in graphs and affect the matching
accuracy. Based on the ability of the optimal representation map P∗1
and P∗2 that preserves the geometric structure between V1 and the
transformed graph P∗1V2 or P∗2V2, we can propose an explicit outlier-
removal strategy.

The transformed graph GT (V1) with nodes T (V1) = P∗V2 lies in
the convex hull of V2. In some sense, the operation T (V1) = P∗V2
can be viewed as a domain adaptation [50] from the source domain V1
to the target domain V2. The graph GT (V1) has a geometric structure
similar to the original graph G1 and lies in the same space of G2 with
a relatively small offset. Then, we can remove outliers adaptively
using a ratio test technique. Given two point sets T (V1) and V2, we
compute the Euclidean distance dij of all the pairs (T (V

(1)
i), V

(2)
j).

For each node T (V
(1)
i), we find the closest node V (2)

j∗ and remove all
the nodes V (2)

j when dij > k · dij∗ for a given k > 0. If the number
of remaining nodes l is less than m, m − l nodes are selected from
the removed ones that are closer to T (V1) and added. See Fig. 4 as
an example, where after several iterations most outliers are removed.
More experimental results are reported in the experimental section.

5 FRGM WITH GEOMETRIC DEFORMATION
For Euclidean GM, rigid or nonrigid geometric deformations may
exist between graphs, where we need to estimate both the corre-
spondence and deformation parameters. This section demonstrates
that the FRGM can provide a new parameterization of transformation
between graphs. Due to the associative law of matrix multiplication,
this parameterization is associative with the deformation parameters.
Theoretically, this allows us to extend FRGM for geometrically
deformed graphs (FRGM-D) by estimating the correspondence and
deformation parameters alternately.

5.1 Geometric deformation
Given two point sets V1 = {V (1)

i }
m
i=1,V2 = {V (2)

j }
n
j=1 ⊆ Rd with

geometric transformation τ : V1 → V2, the task to estimate both
the correspondence P and parameters of τ is generally formulated as
minimizing the sum of residuals:

min
P∈P,τ∈χ

J(P, τ) =
∑
i,j

Pij ||V (1)
i − τ(V

(2)
j)||2 + Υ(τ), (26)

where Υ is a regularization term of τ . On the one hand, most of the
state-of-the-art registration algorithms such as [51], [52], [53] do not
explicitly recover the correspondence P as a binary solution. Rather,
they estimate P in a soft way as Pij ∈ [0, 1] to give Pij a probability
interpretation: Pij stands for the correspondence probability between
V

(1)
i and V

(2)
j . On the other hand, some methods [19], [54], [55]

have also been proposed to find the binary correspondence by general
GM algorithms. However, these GM-based methods are not consistent
with the geometric nature behind the real data. Therefore, they can
only handle point sets with simple geometric deformations.

Given a finite point set V ⊆ Rm×d, the rigid or nonrigid geometric
deformation is generally expressed as follows.

- Similarity transformation: τ(V) = sVR + 1mt, where
s ∈ R+, R ∈ Rd×d, and t ∈ R1×d denote the scaling
factor, the rotation matrix and the translation vector, respec-
tively. Naturally, R should satisfy the constraint: RTR =
Id, det(R) = 1.

- Affine transformation: τ(V) = VA + 1mt, where A ∈
Rd×d and t ∈ R1×d denote the affine matrix and the
translation vector, respectively.

- Non-rigid transformation: τ(V) = V + KeW, where
Ke ∈ Rm×m is a kernel determined by the basis points
{Vi}i and displacement functions {ϕi}i, and W ∈ Rm×d
is a weight matrix that measures the degree of deforma-
tion. This definition is based on the radial basis function
(RBF) method, which is widely used to parameterize nonrigid
transformation. This formulation means that the nonrigid
transformation is assumed to be a displacement shifted from
its initial position. In this paper, we utilize the Gaussian
RBF, i.e., ϕi(V) , exp(−||V − Vi||22/σ2

w), where σw is the
bandwidth dependent on the degree of deformation. Then,
the kernel is computed as Ke(i, j) = ϕi(Vj). Following
some previous works, we set the regularization term as
Υ(τ) = Tr(WTKeW) to penalize the nonsmoothness of
nonrigid deformation.

Next, We demonstrate our FRGM-D method in the following.

5.2 Function composition-based method
With the geometric deformation τ : V1 → V2, we aim to find a linear
representation map P of matching T : V1 → V2, which remains

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 8

consistent with τ such that the composition of T and τ−1 is an identity
function Id:

τ−1 ◦ T = Id : V1 → V1. (27)

According to the associative property of matrix multiplication, the
composition τ−1 ◦ T can be rewritten as follows:

- For similarity transformation

τ−1 ◦ T (V1) =
1

s
(PV2)R−1 − 1

s
1mtR−1

=
1

s
P(V2R−1)− 1

s
1mtR−1 (28)

- For affine transformation

τ−1 ◦ T (V1) = (PV2)A−1 − 1mtA−1

= P(V2A−1)− 1mtA−1 (29)

- For nonrigid transformation

τ−1 ◦ T (V1) = (PV2)−KeW. (30)

Consequently, this associative property allows us to estimate P
and the parameters of τ alternately.

The alternating estimations of T and τ are as follows. First, we
use the identity function Id for the initialization of τ . In the alternating
steps, once τ is given, we update the graph as V1 ← τ(V1) and then
apply our algorithm FRGM-E to find the correspondence between
V1 and V2. After P is given, we recover the parameters of τ by
minimizing the objective function as:

J(τ) =
∑
i

||V (1)
i − τ−1((PV2)i)||2 (31)

+λ
∑

(i1,i2)

E1i1i2 ||(V
(1)
i1
− V (1)

i2
)− τ−1((PV2)i1 − (PV2)i2)||2.

Given the correspondence P, the parameters of τ can be computed
in closed form as follows for different transformations:

- For similarity transformation: The optimal translation vector
t∗ can be represented as a function of R∗ and s∗ as

t∗ = PV̄2 − s∗V̄1R∗, V̄1 =
1TmV1
m

, V̄2 =
1TnV2
n

. (32)

By the centralization of points, V1 ← V1 − 1mV̄1 and V2 ←
V2 − 1nV̄2, we have:

R∗ = (Udiag(1, ..., |UVT |)VT)−1. (33)

s∗ =
Tr[(PV2)T (Im + λL1)(PV2)]

Tr[VT1 (Im + λL1)(PV2)R∗]
, (34)

where UΣVT = svd(VT1 (Im + λL1)(PV2)) and L1 =
diag(E1I)− E1.

- For affine transformation: The parameters can be computed
as:

t∗ = PV̄2 − V̄1A∗, (35)

A∗ =
(PV2)T (Im + λL1)(PV2)

VT1 (Im + λL1)(PV2)
, (36)

with centralized points V1 ← V1 − 1mV̄1 and V2 ← V2 −
1nV̄2.

- For nonrigid transformation: We choose points V1 =
{V (1)

i }
m
i=1 as the basis points to compute the kernel matrix

Ke. Note that, a regularization term σ2Tr(WTKeW) is
added to J(τ). After centralizing the points, the optimal
solution W∗ is

W∗ = − (V1 −PV2)T (Im + λL1)

Ke(Im + λL1) + σ2
, (37)

where σ2 = 1
mn

∑
ij Pij ||V (1)

i −V(2)
j ||

2 is used to avoid the
singularity of matrix division in Eqn. (37).

6 NUMERICAL ANALYSIS

In this section, we discuss the optimization strategy for solving the
proposed algorithms. We first introduce an efficient optimization
algorithm based on the Frank-Wolfe method. Then, we propose
an entropy regularization-based approximation of the Frank-Wolfe
method to further reduce the time complexity.

6.1 The Frank-Wolfe method
The objective functions proposed in the previous sections may be
either convex or nonconvex, and the feasible field P̂ is a convex
and compact set. The Frank-Wolfe (FW) method (also known as
conditional gradient) [56], [57] has been well studied for solving
constraint convex or nonconvex optimization problems with at least a
sublinear convergence rate.

Given that f(P) is differentiable with an L-Lipschitz gradient and
P̂ is a convex and compact set, the FW method iterates the following
steps until it converges:

P̃(k+1) ∈ argmin
P∈P̂

f (k)(P) , 〈∇f(P(k)),P〉, (38)

P(k+1) = P(k) + α(k)(P̃(k+1) −P(k)), (39)

where α(k) is the step size obtained by exact or inexact line
search [58], and ∇f(P(k)) is the gradient of f at P(k).

In Eqn. (38), the minimizer P̃(k+1) ∈ P̂ is theoretically an
extreme point of P̂ (thus, it is binary). This means that P̃(k+1) ∈ P .
Therefore, Eqn.(38) is a linear assignment problem (LAP) that can
be efficiently solved by approaches such as the Hungarian [25] and
LAPJV [59] algorithms. Moreover, since P̃(k+1) is binary in each
iteration, the final solution P∗ can be (nearly) binary.

Time complexity of the FW method. The time complex-
ity can be roughly calculated as O (T (τf + τl) + τs + τh), where
τs = O(mn + m2 + n2) is the cost of the unary term and edge
attributes for graphs, τh = O(n3) is the cost of the Hungarian
algorithm used as a post-discretization step, T is the number of
iterations. In each iteration, τf = O(m2n) is the cost to compute
the gradient, function value and step size at P(k), and τl = O(n3) is
the cost to compute LAP using the Hungarian or LAPJV algorithm.
Note that since τf = O(m2n) is computed in closed form, it takes
much less time compared to τl = O(n3). Since m ≤ n, the time
complexity approximately equals O(Tn3) with the maximum number
of iterations T .

6.2 A fast approximated FW method
Similar to the above analysis, the time complexity of applying the
FW method to solve FRGM-D is roughly O(kTn3), where k is
the number of alternations to estimate the correspondence P and
transformation τ . Note that we can neglect the computation for the
parameters of τ because it is calculated in closed form and is much
less than the cost of computing P. Therefore, the time complexity
O(kTn3) is mainly caused by solving the LAP. To achieve faster
execution and proper approximation, we approximate the original
Frank-Wolfe method based on the generalized conditional gradient
algorithm [60] by adding a convex entropy regularization term in
each iteration of solving LAP. The approximated Frank-Wolfe method
(AFW) is defined as follows:

P̂(k+1) ∈ argmin
P∈P̂

f (k)
ε (P) , 〈∇f(P(k)),P〉 − εH(P), (40)

P(k+1)
ε = P(k) + α̂(k)(P̂(k+1) −P(k)), (41)

where H(P) = −
∑
ij Pij ln(Pij) is the entropy of P. To minimize

Eqn. (40), we can use the Sinkhorn method [45] as a fast implemen-
tation, which has a time complexity of O(mn).

With the entropy regularization H(P), we can approximate the
original FW method well within a given tolerance:

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 9

(a) ε = 1/15 (b) ε = 1/25 (c) ε = 1/50

20 40 60 80 100

#Iteration

0

20

40

60

80

100

120

F
u

n
ct

io
n

 V
a

lu
e

FW

AFW: ǫ=1/100

AFW: ǫ=1/200

AFW: ǫ=1/400

AFW: ǫ=1/800

(d) FW v.s. AFW

1

Fig. 5. Comparison between FW and AFW. A toy example in (a)–(c), where P̂ ⊆ R1×3
+ , P = (P1,P2,P3), and the hyperplane ∇f(P(k)) =

(0.3, 0.4, 0.5). There are three extreme points of P̂: A = (0, 0, 1),B = (0, 1, 0),C = (1, 0, 0). From (a) to (b), ε = 1
15
, 1
25
, 1
50

, respectively. f (k)(P)

reaches its minimum at C = (1, 0, 0), and {f (k)ε (P)}ε reach their minima at the red dots. A cool color means a small value. It shows that during the
iterations, the solution of f (k)ε (P) gradually approximates the solution of f (k)(P) with ε tending to be smaller. In (d), we show a real example from
Sec. 7.4. The function values of objective functions calculated by AFW tend to be equal to the values obtained by FW when ε becomes smaller.

Proposition 4. The solution P̂(k+1) tends to P̃(k+1) as ε→ 0.

||P̂(k+1) − P̃(k+1)|| ≤
√
mn

ε
e−

c
ε , (42)

where c ∈ [0, 1] is a constant dependent on m,n and ∇f(P(k)).

The proof can be given based on the primal-dual analysis for linear
programming [61], see appendix ?? for more details. Therefore, with
ε > 0 small enough, we can obtain a good approximation. We can
prove that the AFW method achieves at least a sublinear convergence
rate inspired by [56]. And a short proof can be found in appendix ??.

Proposition 5. Assume that f(P) is differentiable with an L-Lipschitz
gradient; by choosing a series of εk ≤ 1

k+1
, the AFW method ensures

at least a sublinear convergence rate.

0 ≤ f(P(k+1)
ε)− f(P∗) ≤ 2(LC2 +mln(m))

k + 2
, (43)

where P∗ is the ideal solution of f(P) and C = diam(P̂) is the
diameter of the feasible field P̂ .

Another reason for choosing H(P) is that H(P) = 0 when P is
an extreme point of P̂ , i.e., a binary correspondence between graphs.
This means that f (k)

ε (P) has the same function value as f (k)(P)
at any extreme point. See Fig. 5 for an illustration. Note that, in the
implementation of optimization, the iteration procedure will stop once
it reaches the maximal number of iterations (T = 100) or the absolute
difference between two successive function values is less than 10−5.

Time complexity of the AFW method Similar to the FW method,
the time complexity of the AFW method can be roughly calculated
as O (T (τf + τ ′l) + τs + τh), where τ ′l = O(mn) is the cost to
compute Eqn. (40) using the Sinkhorn method.

7 EXPERIMENTAL ANALYSIS
In this section, we evaluate our functional-representation-based GM
methods, i.e. the general GM (FRGM-G), Euclidean GM (FRGM-E)
and deformable GM (FRGM-D) algorithms.

In Sec. 7.1–Sec. 7.3, we compare FRGM-G and FRGM-E to
several state-of-the-art GM algorithms, including GA [35], PM [28],
SM [11], SMAC [30], IPFP-S [23], RRWM [12], FGM-D [19],
MPM [44] and DTA [38]. In Sec. 7.4, we compare FRGM-D with sev-
eral state-of-the-art point registration algorithms, including GLS [53],
GMM [52], CPD [51]. Note that in Sec. 7.4 where we evaluate our
FRGM-D on geometrically deformed graphs, we do not compare the
GM algorithms used in Sec. 7.1–Sec. 7.3 because those methods
can neither be directly used for this task nor handle graphs with
significant geometric deformations. All comparisons are conducted
on both synthetic and real-world datasets that are commonly used to
evaluate GM or point registration algorithms. We obtained the codes
of the compared methods from the author’s websites and implemented
all the experiments on a desktop with a 3.5GHz Intel Xeon CPU E3-
1240 and 16 GB memory.

Fig. 6. Left: Some instances of 3D faces. Right: an example of matching
unequal-sized graph pairs with sizes (40, 50).

7.1 Results on 3D face
This section evaluated our algorithm FRGM-G with experiments
conducted on graphs in low-dimensional manifold, i.e., 3D face. We
both (1) evaluated FRGM-G w.r.t. varying graph settings and (2)
compared FRGM-G with other state-of-the-art GM methods.

The experiments were performed on 383 continuous frames of 3D
faces [62] with gradually changing expressions. We selected 38 frames
whose expressions were more dissimilar to each other, and each frame
was marked with 50 landmarks as the ground-truth. Some examples
are shown in Fig. 6. For each pair of faces, we construct two graphs
G1 and G2 with node attributes {v(1)

i }
m
i=1 and {v(2)

j }
n
j=1 consisting

of the HKS [49] feature descriptors. The edge attribute matrices E1

and E2 were computed as the geodesic distance between graph nodes
on the faces. For the implementation of FRGM-G, the unary term
measuring node dissimilarity is computed as Uij , ||v(1)

i − v
(2)
j ||.

We updated the raw matrices E1 and E2 into Ê1 = exp(−E2
1/σ

2)
and Ê2 = exp(−E2

2/σ
2) to honor the inner product illustrated in

Proposition 1. Then, we used Ê1 and Ê2 to compute the functionals,
i.e., inner products FV1(·, ·) and FV2(·, ·) defined in Eqn. (8). We
computed D with Eqn. (10) and set α1 = 0.99, α2 = 0.5.

We evaluated our FRGM-G in two aspects. First, we conducted
experiments on graphs with varying σ = 0.05, 0.1, ..., 1, whose
results are reported in Fig. 7 (a). It shows that, with σ ≈ [0.3, 0.5],
FRGM-G usually achieves higher accuracy. This is consistent with
the analysis of eigenvalues in Fig. 2. Second, to evaluate FRGM-G on
graphs with varying edge densities, we used k-nn graphs, i.e., each
node was connected by the k-nearest neighborhood nodes to generate
adjacency matrices E1 and E2. The edge density was determined by k,
which was set to 10%, 20%, ..., 100% of the number of nodes (m,n).
The results (with σ = 0.5) are shown in Fig. 7 (b). In this experiment,
FRGM-G achieves higher accuracy with more edges because the
geometric structures such as inner product or metric will be more
complete with more edges.

We then compared our FRGM-G (with σ = 0.5) and the
other GM algorithms with complete graphs of sizes (m,n). For the
compared methods, the node affinity was computed as Kij;ij =

exp(−||v(1)
i − v

(2)
j ||), and the edge affinity was computed as

Kiiji;i2j2 = exp(−(E1i1i2
−E2j1j2

)2/500), as used similarly
in [19]. The comparison results are shown in Tab. 2. Because the

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 10

0.2 0.4 0.6 0.8 1

σ

0

0.2

0.4

0.6

0.8

1
A

c
c
u

ra
c
y

(20,50)

(30,50)

(40,50)

(50,50)

(a)

0.2 0.4 0.6 0.8 1

#k-nn

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(20,50)

(30,50)

(40,50)

(50,50)

(b)

Fig. 7. Left: evaluation results on parameter σ ∈ (0, 1]. Right: results on
k-nn connected graph pairs with varying edge densities.

TABLE 2
Comparison results of average accuracy (%) on the 3D face dataset.

Method
(m,n) (25,50) (30,50) (35,50) (40,50) (45,50) (50,50)

GA [35] 12.00 15.41 21.39 29.26 39.94 50.54
PM [28] 6.70 7.03 11.27 16.01 22.16 33.30
SM [11] 11.24 11.62 16.76 23.18 37.96 54.59

SMAC [30] 26.49 33.69 45.87 58.11 68.41 82.43
IPFP-S [23] 11.35 7.12 5.95 10.07 7.63 69.19
RRWM [12] 19.14 28.56 44.71 55.47 65.59 90.05
FGM-D [19] 46.81 59.91 75.06 84.66 92.01 99.78

MPM [44] 8.32 11.17 16.76 29.39 40.66 52.76
DTA [38] 37.25 41.80 49.36 53.64 57.53 61.41

FRGM-G 76.14 79.88 89.16 91.58 98.04 100.00

geometric structures defined on function spaces of graphs are more
efficient for representing the distinguishing feature of graphs, our
proposed FRGM-G achieves much higher average accuracy in both
equal-sized and unequal-sized cases.

7.2 Results on synthetic data
In this section, we performed a comparative evaluation of both
FRGM-G and FRGM-E on synthesized graphs following [12], [19],
[20]. The synthetic nodes of G1 and G2 were generated as follows:
for graph G1, nin inlier points were randomly generated on R2 with
Gaussian distribution N (0, 1). Graph G2 with noise was generated
by adding Gaussian noise N (0, σ2) to each V

(1)
i to evaluate the

robustness to noise. Graph G2 with outliers was generated by adding
nout additional points on R2 with a Gaussian distribution N (0, 1) to
evaluate the robustness to outliers.

For the compared methods, we computed the node affinity as
Kij;ij = exp(−||v(1)

i − v
(2)
j ||) with v

(1)
i ,v

(2)
j computed by shape

context [3], and we computed the edge affinity as Ki1j1;i2j2 =

exp(−(||V (1)
i1
− V (1)

i2
|| − ||V (2)

j1
− V (2)

j2
||)2/0.15) as used in [19].

For FRGM-G, we computed the unary term U by shape context and
set α1 = 0.99, α2 = 0.5. For FRGM-E, we set λ1 = 0.99, λ2 = 0.5.
To compute the matrix S ∈ Rm×m that indicated the adjacent nodes
in {T (V

(1)
i)}mi=1 , we performed a Delaunay triangulation on V1 to

connect the edges. Then these edges were divided into two parts using
k-means by considering the edge length. Edges with longer lengths
were then abandoned.

Average accuracy. Since the compared methods have a con-
siderable space complexity of O(m2n2) when the graphs are fully
connected, they can hardly handle complete graphs with more than a
hundred nodes. Therefore, for fairness, we performed the experiment
on two types of graphs: smaller graphs that were fully connected and
lager graphs that were connected by Delaunay triangulation. We first
applied all methods to complete graphs of size nin = 20 with either
the noise level σ varying from 0 to 0.5 (by intervals of 0.05) or number
of outliers nout varying from 0 to 20 (by intervals of 2). Then, we
enlarged the size of the graphs to nin = 100 and connected the edges
by Delaunay triangulation. Similarly, noise and outliers were added.

As shown in Fig. 8 (a) and (b), under the complete graph
setting, our algorithms FRGM-G and FRGM-E achieve higher average

accuracy than the other algorithms in the case with noise and achieve
competitive results in the case with outliers, respectively. As shown
in Fig. 8 (c) and (d), with larger graphs connected by Delaunay
triangulation, both FRGM-G and FRGM-E outperform all the other
methods. Moreover, we can observe that all algorithms achieve higher
accuracy on complete graphs than graphs connected by Delaunay
triangulation.

Running time. To compare the time consumptions of all methods,
we tested all methods on graphs with inliers varying as nin =
10, 20, ..., 100 and noise σ = 0.2. Considering the effect of the
number of edges on time consumption, we used both complete and
Delaunay-triangulation-connected graphs.

As shown in Fig. 9, under the same conditions in which graphs
are either complete or connected through Delaunay triangulation, our
algorithms FRGM-G and FRGM-E achieve higher average accuracy
within an intermediate running time. For all methods, matching
complete graphs comsumes more time than Delaunay-triangulation-
connected graps. Compared with GA, SM, PM, SMAC, and IPFP-S,
which run faster, our method can achieve higher average accuracy. The
methods RRWM, FGM and MPM can achieve competitive accuracy
when the graphs are fully connected. However, the time consumptions
of these methods rapidly increase and become larger than that of ours
method, and they will take an unacceptable amount time to match
complete graphs that have more than a hundred nodes.

Large-scale graph matching. To test the efficiency of FRGM-
G and FRGM-E on large-scale graphs, we used more challenging
settings for evaluation. We set the number of inliers as nin =
100, 300, 500, 1000 with Gaussian noise or outliers. The number of
outliers was set to 20%, 40%, ..., 100% of the number of inliers.

Tab. 3 reports the results of FRGM-G and FRGM-E on complete
graphs with hundreds and thousands of nodes. Both FRGM-G and
FRGM-E are very robust to outliers and less robust to strong noise
with larger graphs. FRGM-E is much faster than FRGM-G because
FRGM-E searches for the optimal solution upon a simpler Euclidean
space Rd, while FRGM-G searches for the optimal solution upon a
more complex function space F(V2,R). Since the compared methods
need to store affinity matrices with a size of approximately n2

in(nin+
nout)

2, applying these methods to large-scale graphs with hundreds
or thousands of nodes is infeasible.

7.3 Results on real-world image datasets
We also performed comparative evaluations on real-world datasets,
including the CMU House and Hotel sequences, the PASCAL Cars
and Motorbikes pairs [41], which are commonly used to evalu-
ate GM algorithms. All methods are applied to complete graphs.
The CMU House and Hotel sequences consist of 111 and 101
frames of a synthetic house and hotel, respectively. Each image
contains 30 points that are manually marked with known corre-
spondence. In this experiment, we matched all the image pairs
separated by 10, 20,.., 90 frames. The unequal-sized cases are
set as 20-vs-30 and 25-vs-30. For the compared methods, we
computed the node affinity Kij;ij = exp(−||v(1)

i − v
(2)
j ||) with

shape context, and we computed the edge affinity as Ki1j1;i2j2 =

exp(−(||V (1)
i1
− V (1)

i2
|| − ||V (2)

j1
− V (2)

j2
||)2/2500) used in [19].

Average accuracy. As shown in Fig. 11, for the house sequence,
our algorithms FRGM-G and FRGM-E achieve higher accuracy in
both equal-sized and unequal-sized cases. For the hotel sequence,
FRGM-G outperforms all the other methods.

The PASCAL dataset consists of 30 pairs of car images and 20
pairs of motorbike images. Each pair contains both inliers with known
correspondence and randomly selected outliers. In the unequal-sized
case, we added 5, 10, 15, and 20 outliers to G2. For the compared
methods, we computed the same node affinity used on the CMU
dataset, and we computed the edge affinity with the edge length and
edge angle, which were used in [19].

Outlier removal effectiveness. The outliers occurring in graphs
often seriously affect the matching accuracy. We tested our proposed
outlier-removal strategy on PASCAL dataset. We first applied it to

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 11

GA PM SM SMAC IPFP-S RRWM FGM-D MPM DTA FRGM-E FRGM-G

0 0.1 0.2 0.3 0.4 0.5

Noise Level

0

0.2

0.4

0.6

0.8

1
A

cc
u

ra
cy

n
in

 = 20

n
out

 = 0

(a)

0 4 8 12 16 20

#Outlier

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

n
in

 = 20

noise = 0

(b)

0 0.04 0.08 0.12 0.16 0.2

Noise Level

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

n
in

 = 100

n
out

 = 0

(c)

0 20 40 60 80 100

#Outlier

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

n
in

 = 100

noise = 0

(d)

Fig. 8. Comparisons of the robustness to noise and outliers. For complete graphs, the accuracies with respect to the noise and number of outliers
are shown in (a) and (b), respectively. The results for graphs connected by Delaunay triangulation are shown in (c) and (d). FRGM-G and FRGM-E
outperform all the others for graphs with noise and outliers.

GA PM SM SMAC IPFP-S RRWM FGM-D MPM DTA FRGM-E FRGM-G

10 20 40 60 80 100

#Inlier

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

n
out

 = 0 noise = 0.2

(a)

10 20 40 60 80 100

#Inlier

-3

-1

0

1

3

5

T
im

e
(l

o
g

1
0

)

n
out

 = 0 noise = 0.2

(b)

10 20 40 60 80 100

#Inlier

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

n
out

 = 0 noise = 0.2

(c)

10 20 40 60 80 100

#Inlier

-3

-1

0

1

3

T
im

e
(l

o
g

1
0

)

n
out

 = 0 noise = 0.2

(d)

Fig. 9. Comparisons of running time and average accuracy. The graphs in (a) and (b) are complete, and the graphs in (c) and (d) are connected
through Delaunay triangulation. FRGM-G and FRGM-E outperform all the others in terms of matching accuracy with modest running time.

TABLE 3
Average accuracy and running time of FRGM-G (left) v.s. FRGM-E (right) on synthetic data with varying inliers, noise and outliers.

#Inlier Noise (σ) 0.02 0.04 0.06 0.08 0.10

100 time (s) 0.07 / 0.11 0.11 / 0.32 0.14 / 0.54 0.24 / 0.73 0.25 / 0.88
acc. (%) 98.38 / 98.86 94.28 / 95.70 88.74 / 90.70 81.10 / 85.20 72.16 / 75.76

300 time (s) 2.07 / 4.43 3.78 / 6.80 7.88 / 7.06 15.20 / 7.29 19.18 / 7.34
acc. (%) 95.33 / 96.34 85.08 / 87.66 71.32 / 76.11 60.17 / 63.73 48.60 / 50.79

500 time (s) 18.10 / 27.18 34.43 / 27.83 86.30 / 28.94 161.14 / 29.61 214.29 / 30.33
acc. (%) 93.14 / 94.35 77.62 / 80.27 60.32 / 63.80 46.74 / 49.70 37.44 / 39.14

1000 time (s) 120.85 / 124.66 233.14 / 179.87 426.40 / 184.53 711.78 / 187.67 1810.42 / 191.76
acc. (%) 88.16 / 89.43 63.29 / 66.34 43.79 / 45.23 32.20 / 33.47 24.23 / 25.27

#Inlier #Outlier 0.2 0.4 0.6 0.8 1.0

100 time (s) 0.06 / 0.03 0.08 / 0.04 0.10 / 0.07 0.15 / 0.14 0.22 / 0.17
acc. (%) 99.86 / 99.98 99.74 / 99.88 99.22 / 99.85 98.77 / 99.76 98.08 / 99.68

300 time (s) 1.26 / 0.18 2.04 / 0.34 5.53 / 0.74 7.87 / 1.17 10.33 / 2.02
acc. (%) 99.90 / 99.98 99.66 / 99.92 99.33 / 99.93 98.66 / 99.83 98.19 / 99.83

500 time (s) 27.72 / 0.97 48.34 / 2.01 74.65 / 3.43 136.82 / 5.89 222.28 / 10.91
acc. (%) 99.94 / 99.95 99.86 / 99.95 99.44 / 99.89 98.18 / 99.87 97.54 / 99.96

1000 time (s) 181.63 / 4.48 337.41 / 10.99 461.22 / 30.94 502.51 / 54.95 626.03 / 77.72
acc. (%) 99.92 / 99.99 99.68 / 99.97 99.16 / 99.97 97.95 / 99.97 97.05 / 99.96

17

14

25

16

13

21

29

 1

 7

22

28

 5

 2 30

23

10

 3

18

27

 9

 1

 2

 3

 4

 5

 6
 7

 8

 9 10

11

1213

1415

16
17

18
19

20

21

22
23

24
25

26 27
28

29

30

(a) 20-vs-30 (Acc: 20/20)

23

19

12

27

21

15

 1

 5

13

29

 7

 3

28

20

11

 4

17

 6

 8

 9

 1

 2

 3

 4

 5
 6

 7

 8

 9

10

11
12

13

14

15

16

17

18

19
20

21 22

23

24

25

26

27

28

29

30

(b) 20-vs-30 (Acc: 20/20)

 1

 2

 3
 4

 5 6

 7

 8
 9

10
11

12

13 14

15

16

17

18

1920
21

22 2324

25

26

27

28

 1

 2

 3
 4

 5
 6

 7

 8

 9

10

11

12

13 14

15

16

17

18

1920
21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

 1

 2

 3
 4

 5
 6

 7

 8

 9

10

11

12

13 14

15

16

17

18

1920
21

22
23

24

25

26

27

28

(c) 28-vs-48 (Acc: 28/28)

 1

 2

 3

 4 5 6
 7

 8

 910

11
12

13

1415

16 17 18 19
20 21

22 23

24
25

26

27
28

29

30

31

32
33

34

35 36

37

38

39
40

41
42

43

44

45
46

 1

 2

 3

 4 5 6

 7

 8

 910

11
12

13

14 15

16 17 18 19 20 21
22 23

24
25 26

27

28

29

30

31

3233

34

35 36

37

38
39

40

41 42

43

44

45
46

47 48 49

50 51

52 53 54

55 56 57 58 59 60

61 62
63 64 65 66 67

68
69 70

71

72

73 74
75 76 77

78 79 80

81 82 83

84 85 86

(d) 46-vs-86 (Acc: 46/46)

Fig. 10. Examples of matching unequal-sized graphs using FFRGM-G (in (a) and (b)) and FRGM-E (in (c) and (d)). The red dots are inliers in G1,
and the yellow plus signs are inliers with outliers in G2. The lines in green are correct matches.

graph pairs with outliers as a preprocessing step, and then we executed
all the algorithms on the preprocessed graphs. As shown in Tab. 4,
the average accuracy of all the methods is greatly improvement, and
almost all the methods improve their performance by more than 10%.
Moreover, as shown in Fig. 12, FRGM-G achieves the highest average
accuracy, and FRGM-E achieves a competitive result.

7.4 Results on geometrically deformed graphs
In this section, we evaluated our algorithm FRGM-D for matching
graphs with geometric deformations. We chose 5 templates: Olympic
logo (113 nodes), whale (150 nodes), Chinese character (105 nodes),
tropical fish (91 nodes) and UCF fish (98 nodes), which have been
widely used by registration methods [51], [52], [63]. Fig. 13 shows

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 12

GA PM SM SMAC IPFP-S RRWM FGM-D MPM DTA FRGM-E FRGM-G

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(a) 20-vs-30

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(b) 25-vs-30

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(c) 30-vs-30

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(d) 20-vs-30

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(e) 25-vs-30

10 30 50 70 90

#Separation

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(f) 30-vs-30

Fig. 11. Comparison of average accuracy on the house ((a)-(c)) and hotel ((d)-(f)) sequences in both equal-sized and unequal-sized cases. FRGM-G
achieves higher average accuracies than the other methods.

GA PM SM SMAC IPFP-S RRWM FGM-D MPM DTA FRGM-E FRGM-G

0 5 10 15 20

#Outlier

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(a) Cars

0 5 10 15 20

#Outlier

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

(b) Motorbikes

Fig. 12. Comparison on car and motorbike image pairs with outliers.
FRGM-G achieves the highest average accuracy.

TABLE 4
Effectiveness of outlier-removal strategy. It improves the average
matching accuracy by more than 10% for almost all the methods.

Method Out. Re. Cars Motorbikes

GA [35] w/o 34.50 45.97
w/ 66.14 70.60

PM [28] w/o 37.04 43.56
w/ 64.21 64.26

SM [11] w/o 38.04 47.13
w/ 67.72 70.75

SMAC [30] w/o 38.53 43.84
w/ 54.91 56.89

IPFP-S [23] w/o 38.53 43.84
w/ 74.36 71.84

RRWM [12] w/o 53.84 65.64
w/ 75.09 76.92

FGM-D [19] w/o 49.05 67.31
w/ 78.72 80.01

MPM [44] w/o 58.02 65.73
w/ 65.11 72.17

DTA [38] w/o 46.24 69.03
w/ 66.33 73.99

FRGM-E w/o 32.74 43.19
w/ 77.67 77.74

FRGM-G w/o 55.02 68.19
w/ 88.59 88.51

some results obtained by FRGM-D, in which the graphs are disturbed
by geometric deformations, noises, missing points and outliers.

Robustness to deformations. For each template denoted as graph
G1, the graph G2 was generated by adding geometric deformations to

G1. To evaluate the robustness to rotation and scaling, we rotated the
template G1 by varying degrees in [−π, π] and scaled G1 with varying
scaling factors in [0.1, 1] and [2, 20]. In addition, the graph G2 was
also disturbed with noise with distribution N (0, 0.02) and outliers
nout = 100 with distribution N (0, 0.25). To evaluate the robustness
to nonrigid deformations, we deformed G1 by weight matrix W with
distribution N (0, σ2) with varying σ ∈ [0, 0.5] and abandoned the
extremely deformed G2. Then, some slight noises with distribution
N (0, 0.02) were also added. For our algorithm FRGM-D, in the
alternation that estimated the correspondence P, the unary term U
was computed using the rotation-invariant shape context that was also
used in some other works [53], [54]. Moreover, we solved FRGM-D
by the proposed AFW method.

For all methods, we computed the average error between
each point τ(V

(1)
i) and the corresponding point V

(2)
δi

, i.e.,
1
m

∑
i ||τ(V

(1)
i)− V (2)

δi
||. Moreover, to evaluate the parameterization

T (i.e., binary correspondence P) obtained by FRGM-D, we also
reported the average error between T (V

(1)
i) and the correspondence

V
(2)
δi

, i.e., 1
m

∑
i ||T (V

(1)
i) − V (2)

δi
||. We denoted these two types of

average errors as FRGM-D1 and FRGM-D2 for our algorithm. As
shown in Fig. 14 (a) and (b), our algorithm is more robust to rotation
and scaling factor. As shown in Fig. 14 (c), FRGM-D1 is competitive
with GMM and CPD, and FRGM-D2 has less average errors due to
the well-estimated P.

Robustness to noise and outliers. In this experiment, each
template G1 was first deformed with similarity and nonrigid defor-
mations to obtain G2. Then, G2 was disturbed by noises N (0, σ2)
with σ ∈ [0, 0.05] and ratios of outliers varying in [0, 1]. In addition,
we also randomly neglected inliers in G1 with missing point ratios in
[−0.5, 0].

As shown in Fig. 15 (a) and (b), under similarity deformation,
both FRGM-D1 and FRGM-D2 have less average errors for graphs
with missing inliers, outliers and noises. As shown in Fig. 15 (c) and
(d), under nonrigid deformation, FRGM-D2 has less average error.
FRGM-D1 is competitive with GMM and CPD in the cases with noise
and results in higher average error when there are too many missing
points or outliers.

Running time of FW and AFW. Finally, we evaluated the
average execution time on the graphs with rigid or nonrigid geometric
deformations when the algorithm FRGM-D was solved by FW or
AFW, respectively. As shown in Tab. 5, the AFW-based implementa-
tion is nearly 10 times faster.

TABLE 5
The execution times for FW and AFW implementations.

Method

Template
Temp-1 Temp-2 Temp-3 Temp-4 Temp-5

FW 35.3s 69.4s 25.8s 24.9s 30.0s

AFW 4.4s 7.8s 3.8s 3.3s 3.6s

8 CONCLUSION AND DISCUSSION
In this paper, we introduce a functional representation for the GM
problem. The main idea is to represent both the graphs and node-to-

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 13

1

Fig. 13. Examples of matching graphs with geometric deformations by our algorithm FRGM-D. From left to right: the Olympic logo, whale, Chinese
character, tropical fish and UCF fish. From top to bottom: the graphs G1 (red dots) are deformed with similarity (the first row), affine (the second
row) and nonrigid (the third row) transformations. Graphs G2 are disturbed by geometric deformations, noises, missing points and outliers.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Rotation (π)

0

0.2

0.4

0.6

0.8

1

A
v

er
ag

e
E

rr
o

r

GLS GMM CPD FRGM-D1 FRGM-D2

(a)

Scale Factor

0

0.05

0.1

0.15

0.2

A
v

er
ag

e
E

rr
o

r

0.2 0.4 0.6 0.8 1 3 5 7 9

GLS GMM CPD FRGM-D1 FRGM-D2

(b)

0.1 0.2 0.3 0.4 0.5

Deformation Level

0

0.02

0.04

0.06

0.08

0.1

A
v

er
ag

e
E

rr
o

r

GLS GMM CPD FRGM-D1 FRGM-D2

(c)
Fig. 14. Comparisons on rotation (a), scaling factor (b) and deformation level (c). Both FRGM-D1 and FRGM-D2 have less average errors than the
other algorithms.

GLS GMM CPD FRGM-D1 FRGM-D2

Outlier Ratio

0

0.04

0.08

0.12

0.16

A
v
er

ag
e

E
rr

o
r

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.2 0.4 0.6 0.8 1 0.01 0.02 0.03 0.04 0.05

Noise Level

0

0.05

0.1

0.15

0.2

A
v
er

ag
e

E
rr

o
r

Outlier Ratio

0

0.04

0.08

0.12

0.16

A
v
er

ag
e

E
rr

o
r

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.2 0.4 0.6 0.8 1 0.01 0.02 0.03 0.04 0.05

Noise Level

0

0.02

0.04

0.06

0.08

0.1

A
v
er

ag
e

E
rr

o
r

Fig. 15. Comparisons on outliers and noises for similarity deformation
(the first row) and nonrigid deformation (the second row).

node correspondence by linear function spaces and linear functional
representation map, and then represent the pairwise information of
graphs by geometric-aware functionals defined on the function spaces.
It follows with three main contributions of functional representation.
First, the representation provides geometric insights for the general
GM, by which we can construct more appropriate objective functions
and algorithms. Second, the linear representation map is a new
parameterization approach for the Euclidean GM and helps to handle
both conventional and geometrically deformed graphs. Third, the
representation of graph attributes can be used as a replacement for the
costly affinity matrix and reduce the space complexity. Finally, both
efficient algorithms and optimization strategy have been proposed to
solve the proposed GM algorithms with better performance.

Beyond the scope explored in this paper, there are some other
problems that may benefit from our work. There are three inspirations.

- Considering the basis functions and function space of a
graph, some flexible choices are available for different real
applications. For example, for graphs on 3D surfaces, we can
define the eigenfunctions of the Laplace-Beltrami operator

as basis functions; for graphs embedded in hidden spaces,
we can first embed graphs into some specific vector spaces
and then construct the basis functions and function space
aforementioned in Sec. 3.

- For the hypergraph or multigraph matching problem, which
results in much higher computational complexity, the func-
tional representation may be used to reduce the space com-
plexity by representing the higher-order edge attributes and
the matching configuration among the product space of func-
tion spaces.

- The proposed approximated Frank-Wolfe method can be used
to improve the other GM algorithms or some problems that
need to solve objective functions upon the feasible field P̂ by
some modifications.

For the limitations of FRGM, one should note that the current
version of FRGM-G can only handle undirected graphs due to the
construction of the inner product or metric, which requires symmetric
edge attributes. In future work, we will address this issue by extending
the inner product or metric with more general functionals, such as
bilinear functional on the product space of function spaces of graphs.

ACKNOWLEDGEMENT
This work was supported by the National Natural Science Foundation
of China under Grant 61771350 and Grant 61842102. Nan Xue is also
supported by China Scholarship Council.

REFERENCES

[1] J. Yan, X. Yin, W. Lin, C. Deng, H. Zha, and X. Yang, “A short survey
of recent advances in graph matching,” in ICMR, 2016.

[2] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of
graph matching in pattern recognition,” Int’l J. Pattern Recognition and
Artificial Intelligence, vol. 18, no. 3, pp. 265–298, 2004.

[3] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE TPAMI, vol. 24, no. 4, pp. 509–
522, 2002.

[4] V. Garro and A. Giachetti, “Scale space graph representation and kernel
matching for non rigid and textured 3d shape retrieval,” IEEE TPAMI,
vol. 38, no. 6, pp. 1258–1271, 2016.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 14

[5] O. Duchenne, A. Joulin, and J. Ponce, “A graph-matching kernel for
object categorization,” in ICCV, 2011.

[6] W. Lin, Y. Shen, J. Yan, M. Xu, J. Wu, J. Wang, and K. Lu, “Learn-
ing correspondence structures for person re-identification,” IEEE TIP,
vol. 26, no. 5, pp. 2438–2453, 2017.

[7] H. Xiao, W. Lin, B. Sheng, K. Lu, J. Yan, J. Wang, E. Ding, Y. Zhang,
and H. Xiong, “Group re-identification: Leveraging and integrating multi-
grain information,” in ACM Multimedia, 2018, pp. 192–200.

[8] B. Yao and F. Li, “Action recognition with exemplar based 2.5D graph
matching,” in ECCV, 2012.

[9] T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan, “Graph-based
consistent matching for structure-from-motion,” in ECCV, 2016.

[10] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[11] M. Leordeanu and M. Hebert, “A spectral technique for correspondence
problems using pairwise constraints,” in ICCV, 2005.

[12] M. Cho, J. Lee, and K. Lee, “Reweighted random walks for graph
matching,” in ECCV, 2010.

[13] J. Lee, M. Cho, and K. Lee, “Hyper-graph matching via reweighted
random walks,” in CVPR, 2011.

[14] J. Yan, C. Zhang, H. Zha, W. Liu, X. Yang, and S. Chu, “Discrete hyper-
graph matching,” in CVPR, 2015.

[15] E. Loiola, N. de Abreu, P. Netto, P. Hahn, and T. Querido, “A survey for
the quadratic assignment problem,” European J. Operational Research,
vol. 176, no. 2, pp. 657–690, 2007.

[16] E. Lawler, “The quadratic assignment problem,” Management Science,
pp. 586–599, 1963.

[17] T. Koopmans and M. Beckmann, “Assignment problems and the location
of economic activities,” Econometrica: J. the Econometric Society, pp.
53–76, 1957.

[18] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[19] F. Zhou and F. D. la Torre, “Factorized graph matching,” IEEE TPAMI,
vol. 38, no. 9, pp. 1774–1789, 2016.

[20] B. Jiang, J. Tang, C. Ding, and B. Luo, “Binary constraint preserving
graph matching,” in CVPR, 2017.

[21] D. Lê-Huu and N. Paragios, “Alternating direction graph matching,” in
CVPR, 2017.

[22] F. Wang, N. Xue, Y. Zhang, X. Bai, and G.-S. Xia, “Adaptively trans-
forming graph matching,” in ECCV, 2018.

[23] M. Leordeanu, M. Hebert, and R. Sukthankar, “An integer projected fixed
point method for graph matching and map inference,” in NIPS, 2009.

[24] M. Zaslavskiy, F. Bach, and J. Vert, “A path following algorithm for the
graph matching problem,” IEEE TPAMI, vol. 31, no. 12, pp. 2227–2242,
2009.

[25] H. Kuhn, “The hungarian method for the assignment problem,” in 50
Years of Integer Programming 1958-2008 - From the Early Years to the
State-of-the-Art. Springer, 2010, pp. 29–47.

[26] J. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol. 23,
no. 1, pp. 31–42, 1976.

[27] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE TPAMI, vol. 26,
no. 10, pp. 1367–1372, 2004.

[28] R. Zass and A. Shashua, “Probabilistic graph and hypergraph matching,”
in CVPR, 2008.

[29] Y. Lu, K. Huang, and C.-L. Liu, “A fast projected fixed-point algorithm
for large graph matching,” Pattern Recognition, vol. 60, pp. 971–982,
2016.

[30] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” in NIPS,
2006.

[31] P. Torr, “Solving markov random fields using semi definite program-
ming,” in Int’l Conf. Artificial Intelligence and Statistics, 2003.

[32] C. Schellewald and C. Schnörr, “Probabilistic subgraph matching based
on convex relaxation,” in Energy Minimization Methods in Computer
Vision and Pattern Recognition, 2005.

[33] Z. Liu and H. Qiao, “GNCCP —graduated nonconvexity and concavity
procedure,” IEEE TPAMI, vol. 36, no. 6, pp. 1258–1267, 2014.

[34] Z. Liu, H. Qiao, X. Yang, and S. Hoi, “Graph matching by simplified
convex-concave relaxation procedure,” IJCV, vol. 109, no. 3, pp. 169–
186, 2014.

[35] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph
matching,” IEEE TPAMI, vol. 18, no. 4, pp. 377–388, 1996.

[36] Y. Tian, J. Yan, H. Zhang, Y. Zhang, X. Yang, and H. Zha, “On the
convergence of graph matching: Graduated assignment revisited,” in
ECCV, 2012.

[37] L. Torresani, V. Kolmogorov, and C. Rother, “A dual decomposition
approach to feature correspondence,” IEEE TPAMI, vol. 35, no. 2, pp.
259–271, 2013.

[38] K. Adamczewski, Y. Suh, and K. M. Lee, “Discrete tabu search for graph
matching,” in ICCV, 2015.

[39] A. Egozi, Y. Keller, and H. Guterman, “A probabilistic approach to
spectral graph matching,” IEEE TPAMI, vol. 35, no. 1, pp. 18–27, 2013.

[40] T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. Smola, “Learning graph
matching,” IEEE TPAMI, vol. 31, no. 6, pp. 1048–1058, 2009.

[41] M. Leordeanu, R. Sukthankar, and M. Hebert, “Unsupervised learning
for graph matching,” IJCV, vol. 96, no. 1, pp. 28–45, 2012.

[42] A. Zanfir and C. Sminchisescu, “Deep learning of graph matching,” in
CVPR, 2018.

[43] F. Zhou and F. D. la Torre, “Deformable graph matching,” in IEEE CVPR,
2013.

[44] M. Cho, J. Sun, O. Duchenne, and J. Ponce, “Finding matches in a
haystack: A max-pooling strategy for graph matching in the presence of
outliers,” in CVPR, 2014.

[45] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” in NIPS, 2013, pp. 2292–2300.

[46] W. Rudin, Functional Analysis. McGraw-Hill, 2006.

[47] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas,
“Functional maps: a flexible representation of maps between shapes,”
ACM TOG., vol. 31, no. 4, pp. 30:1–30:11, 2012.

[48] E. Rodolà, L. Cosmo, M. Bronstein, A. Torsello, and D. Cremers, “Partial
functional correspondence,” Comput. Graph. Forum, vol. 36, no. 1, pp.
222–236, 2017.

[49] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably infor-
mative multi-scale signature based on heat diffusion,” Comput. Graph.
Forum, vol. 28, no. 5, pp. 1383–1392, 2009.

[50] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal
transport for domain adaptation,” IEEE TPAMI, vol. 39, no. 9, pp. 1853–
1865, 2017.

[51] A. Myronenko and X. Song, “Point set registration: Coherent point drift,”
IEEE TPAMI, vol. 32, no. 12, pp. 2262–2275, 2010.

[52] B. Jian and B. Vemuri, “Robust point set registration using gaussian
mixture models,” IEEE TPAMI, vol. 33, no. 8, pp. 1633–1645, 2011.

[53] J. Ma, J. Zhao, and A. Yuille, “Non-rigid point set registration by
preserving global and local structures,” IEEE TIP, vol. 25, no. 1, pp.
53–64, 2016.

[54] Y. Zheng and D. Doermann, “Robust point matching for nonrigid shapes
by preserving local neighborhood structures,” IEEE TPAMI, vol. 28,
no. 4, pp. 643–649, 2006.

[55] T. Caetano, T. Caelli, D. Schuurmans, and D. Barone, “Graphical models
and point pattern matching,” IEEE TPAMI, vol. 28, no. 10, pp. 1646–
1663, 2006.

[56] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of
frank-wolfe optimization variants,” in NIPS, 2015.

[57] J. Lafond, H. Wai, and E. Moulines, “Non-convex optimization with
frank-wolfe algorithm and its variants,” in NIPS 2016 Workshop on
Nonconvex Optimization for Machine Learning: Theory and Practice,
2016.

[58] A. Goldstein, “On steepest descent,” SIAM J. Control and Optimization,
vol. 3, no. 1, pp. 147–151, 1965.

[59] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, no. 4,
pp. 325–340, 1987.

[60] L. D. . M. P. Bredies, K., “A generalized conditional gradient method and
its connection to an iterative shrinkage method,” Comput. Optim. Appl.,
vol. 42, no. 2, pp. 173–193, 2009.

[61] R. Cominetti and J. S. Martı́n, “Asymptotic analysis of the exponential
penalty trajectory in linear programming,” Math. Program., vol. 67, pp.
169–187, 1994.

[62] L. Zhang, N. Snavely, B. Curless, and S. Seitz, “Spacetime faces: high
resolution capture for modeling and animation,” ACM TOG, vol. 23,
no. 3, pp. 548–558, 2004.

[63] T. Chen, B. Vemuri, A. Rangarajan, and S. Eisenschenk, “Group-wise
point-set registration using a novel cdf-based havrda-charvát divergence,”
IJCV, vol. 86, no. 1, pp. 111–124, 2010.

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919308, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI, 2019 15

Fu-Dong Wang received a B.Sc. degree in
Mathematics from Wuhan University, Wuhan,
China, in 2016. He is currently pursuing his
Ph.D. degree in the State Key Laboratory of
Information Engineering in Surveying, Mapping
and Remote Sensing (LIESMARS) at Wuhan
University. His research interests include graph
matching, optimization theory and 3D computer
vision.

Nan Xue received a B.Sc. degree in Com-
putational Mathematics from Wuhan University,
Wuhan, China, in 2014. He is currently working
toward a Ph.D. degree in the State Key Laboro-
tory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS),
Wuhan University. His research interests include
low-level computer vision and structure-from-
motion. He is a student member of IEEE.

Yipeng Zhang currently is a Research Assis-
tant at the School of Computer Science, Wuhan
University. His major research interest is in the
Computer Aided Design, Parallel Computing and
Artificial Neural Network. He joins Wuhan Uni-
versity after he acquires the master degree from
overseas.

Gui-Song Xia (M’10-SM’15) received his Ph.D.
degree in image processing and computer vision
from CNRS LTCI, Télécom ParisTech, Paris,
France, in 2011. From 2011 to 2012, he has
been a Post-Doctoral Researcher with the Cen-
tre de Recherche en Mathématiques de la De-
cision, CNRS, Paris-Dauphine University, Paris,
for one and a half years. He is currently work-
ing as a full professor in computer vision and
photogrammetry at Wuhan University. He has
also been working as Visiting Scholar at DMA,

École Normale Supérieure (ENS-Paris) for two months in 2018. His
current research interests include mathematical modeling of images and
videos, structure from motion, perceptual grouping, and remote sensing
imaging. He serves on the Editorial Boards of the journals Pattern
Recognition, Signal Processing: Image Communications, and EURASIP
Journal on Image & Video Processing.

Marcello Pelillo (SM’04-F’13) is full professor of
computer science with University of Venice, Italy,
where he leads the Computer Vision and Pat-
tern Recognition group. He held visiting research
positions with Yale University, McGill University,
the University of Vienna, York University, the
University College London. He is general chair
for ICCV 2017 and has served as program chair
for several conferences (EMMCVPR, SIMBAD,
etc.). He serves (has served) on the Editorial
Boards of the journals the IEEE Transactions on

Pattern Analysis and Machine Intelligence, Pattern Recognition, Fron-
tiers in Computer Image Analysis, and serves on the Advisory Board of
the International Journal of Machine Learning and Cybernetics. He is a
fellow of the IEEE and the IAPR.

